Biophysical characterisation of DNA origami nanostructures reveals inaccessibility to intercalation binding sites

被引:21
|
作者
Miller, Helen L. [1 ,2 ]
Contera, Sonia [2 ]
Wollman, Adam J. M. [1 ,3 ,6 ]
Hirst, Adam [4 ]
Dunn, Katherine E. [5 ,7 ]
Schroter, Sandra [4 ]
O'Connell, Deborah [4 ]
Leake, Mark C. [1 ,3 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[3] Univ York, Dept Biol, York YO10 5NG, N Yorkshire, England
[4] Univ York, York Plasma Inst, Dept Phys, York YO10 5DQ, N Yorkshire, England
[5] Univ York, Dept Elect, York YO10 5DD, N Yorkshire, England
[6] Newcastle Univ, Biosci Inst, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[7] Univ Edinburgh, Inst Bioengn, Sch Engn, Faraday Bldg,Kings Bldg,Colin Maclaurin Rd, Edinburgh EH9 3DW, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
DNA origami; DNA damage; YOYO-1; acridine orange; low temperature plasma; single-molecule microscopy; SINGLE; MOLECULES; FLUORESCENCE; RELEASE; GROOVE; DAMAGE; DYE;
D O I
10.1088/1361-6528/ab7a2b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Intercalation of drug molecules into synthetic DNA nanostructures formed through self-assembled origami has been postulated as a valuable future method for targeted drug delivery. This is due to the excellent biocompatibility of synthetic DNA nanostructures, and high potential for flexible programmability including facile drug release into or near to target cells. Such favourable properties may enable high initial loading and efficient release for a predictable number of drug molecules per nanostructure carrier, important for efficient delivery of safe and effective drug doses to minimise non-specific release away from target cells. However, basic questions remain as to how intercalation- mediated loading depends on the DNA carrier structure. Here we use the interaction of dyes YOYO-1 and acridine orange with a tightly-packed 2D DNA origami tile as a simple model system to investigate intercalation-mediated loading. We employed multiple biophysical techniques including single-molecule fluorescence microscopy, atomic force microscopy, gel electrophoresis and controllable damage using low temperature plasma on synthetic DNA origami samples. Our results indicate that not all potential DNA binding sites are accessible for dye intercalation, which has implications for future DNA nanostructures designed for targeted drug delivery.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] Tunable Binding Reactions on DNA Origami Nanostructures
    Li, Bin
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 800A - 800A
  • [2] Characterisation of the DNA-binding sites of factor H
    Herbert, Andrew
    Jenkins, Huw
    Schmidt, Christoph
    Uhrin, Dusan
    Barlow, Paul
    MOLECULAR IMMUNOLOGY, 2008, 45 (16) : 4126 - 4126
  • [3] Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers
    Khmelinskaia, Alena
    Muecksch, Jonas
    Petrov, Eugene P.
    Franquelim, Henri G.
    Schwille, Petra
    LANGMUIR, 2018, 34 (49) : 14921 - 14931
  • [4] Engineering DNA Binding Sites to Assemble and Tune Plasmonic Nanostructures
    Clark, Alasdair W.
    Thompson, David G.
    Graham, Duncan
    Cooper, Jonathan M.
    ADVANCED MATERIALS, 2014, 26 (25) : 4286 - 4292
  • [5] Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug
    Kollmann, Fabian
    Ramakrishnan, Saminathan
    Shen, Boxuan
    Grundmeier, Guido
    Kostiainen, Mauri A.
    Linko, Veikko
    Keller, Adrian
    ACS OMEGA, 2018, 3 (08): : 9441 - 9448
  • [6] Superstructure-dependent non-intercalative drug binding to DNA origami nanostructures
    Kollmann, F.
    Ramakrishnan, S.
    Kostiainen, M. A.
    Grundmeier, G.
    Linko, V.
    Keller, A.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S304 - S304
  • [7] Binding Site Programmable Self-Assembly of 3D Hierarchical DNA Origami Nanostructures
    Wei, Xingfei
    Chen, Chi
    Popov, Alexander V.
    Bathe, Mark
    Hernandez, Rigoberto
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (25): : 4999 - 5008
  • [8] A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads
    Iwaki, M.
    Wickham, S. F.
    Ikezaki, K.
    Yanagida, T.
    Shih, W. M.
    NATURE COMMUNICATIONS, 2016, 7
  • [9] A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads
    M. Iwaki
    S. F. Wickham
    K. Ikezaki
    T. Yanagida
    W. M. Shih
    Nature Communications, 7
  • [10] FOOTPRINTING REVEALS THAT NOGALAMYCIN AND ACTINOMYCIN SHUFFLE BETWEEN DNA-BINDING SITES
    FOX, KR
    WARING, MJ
    NUCLEIC ACIDS RESEARCH, 1986, 14 (05) : 2001 - 2014