STUDY OF PREDICTION MODELS FOR TIME SERIES

被引:0
|
作者
Bartos, Erik [1 ]
Pincak, Richard [2 ,3 ]
机构
[1] Slovak Acad Sci, Inst Phys, Dubravska Cesta 9, SK-84511 Bratislava, Slovakia
[2] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, SK-04353 Kosice, Slovakia
[3] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
关键词
String Theory; Time-Series Analysis; Econophysics; Financial Market; STOCK MARKETS; NEURAL-NETWORK; STRING INVARIANTS; DECOMPOSITION; VOLATILITY; CRISIS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the concept which approaches the string theory to the field of time series forecast and data analysis through a transformation of currency rate data to the topology of physical strings and branes. We introduce new type of prediction models for financial time series based on string invariants. The performance of the first versions of prediction models is compared to support vector machines and artificial neural networks on an artificial and financial time series. We propose a string angular momentum as an another tool to analyze the stability of currency rates except the historical volatility. Next we investigate the fundamental properties of the space of time series data. We provide the proof that the space of time series data is a Kolmogorov space with T-0-separation axiom using the loop space of time series data.
引用
收藏
页码:1 / 84
页数:84
相关论文
共 50 条
  • [1] Forecasting models for prediction in time series
    Carpinteiro, Otavio A. S.
    Leite, Joao P. R. R.
    Pinheiro, Carlos A. M.
    Lima, Isaias
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 163 - 171
  • [2] Time series prediction with ensemble models
    Wichard, JD
    Gorzalek, M
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1625 - 1630
  • [3] Forecasting models for prediction in time series
    Otávio A. S. Carpinteiro
    João P. R. R. Leite
    Carlos A. M. Pinheiro
    Isaías Lima
    Artificial Intelligence Review, 2012, 38 : 163 - 171
  • [4] FITTING TIME SERIES MODELS FOR PREDICTION
    CLEVELAND, WS
    TECHNOMETRICS, 1971, 13 (04) : 713 - +
  • [5] Enhanced Hybrid Prediction Models for Time Series Prediction
    Purwanto, Purwanto
    Eswaran, Chikkannan
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2018, 15 (05) : 866 - 874
  • [6] Iterated time series prediction with ensemble models
    Wichard, JD
    Ogorzalek, M
    PROCEEDINGS OF THE 23RD IASTED INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION, AND CONTROL, 2004, : 512 - 517
  • [7] Prediction of meteorological parameters using statistical time series models: a case study
    Sabat, Naba Krushna
    Nayak, Rashmiranjan
    Srivastava, Harshit
    Pati, Umesh Chandra
    Das, Santos Kumar
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2023, 31 (01) : 128 - 149
  • [8] Feasibility study on prediction of properties of municipal solid waste with time series models
    Lin, JG
    JOURNAL OF HAZARDOUS MATERIALS, 1998, 58 (1-3) : 47 - 57
  • [9] On determining the prediction limits of mathematical models for time series
    Peluso, E.
    Murari, A.
    Gelfusa, M.
    Lungaroni, M.
    Talebzadeh, S.
    Gaudio, P.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [10] Accumulative prediction error and the selection of time series models
    Wagenmakers, EJ
    Grünwald, P
    Steyvers, M
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (02) : 149 - 166