Kinetic model of the methane conversion into higher hydrocarbons with a dielectric barrier discharge microplasma reactor

被引:25
作者
Wang, Baowei [1 ]
Yan, Wenjuan [1 ]
Ge, Wenjie [1 ]
Duan, Xiaofei [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
DBD; Higher hydrocarbons; Kinetic model; Methane; Microplasma; NONTHERMAL PLASMA; C-2; HYDROCARBONS; CRACKING; VOLTAGE; GAS; ACTIVATION; FREQUENCY; CATALYST;
D O I
10.1016/j.cej.2013.08.052
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of CH4/Ar mole ratio, feed flow rate, input voltage, and reactor configuration were investigated for the direct conversion of CH4 into higher hydrocarbons with a coaxial, dielectric barrier discharge (DBD) microplasma reactor at atmospheric pressure. The results indicated that the conversion of CH4 and the selectivies of C2H6 and C3H8 increased with CH4/Ar mole ratio at a fixed feed flow rate. The DBD microplasma reactor with a smaller discharge gap was favorable to methane conversion. Meanwhile, a simplified global kinetic model according to methane concentration was used to compare methane conversion behavior in different microplasma DBD reactors. The kinetic model showed that the conversion of CH4 was an exponential function of the plasma energy for a lower CH4 inlet concentration and a linear function of the input energy for a high CH4 inlet concentration, respectively. The kinetic model also implied that a microplasma reactor with a smaller discharge gap had higher energy efficiency. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 360
页数:7
相关论文
共 26 条
[1]   Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor [J].
Agiral, Anil ;
Nozaki, Tomohiro ;
Nakase, Masahiko ;
Yuzawa, Shuhei ;
Okazaki, Ken ;
Gardeniers, J. G. E. .
CHEMICAL ENGINEERING JOURNAL, 2011, 167 (2-3) :560-566
[2]   Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition [J].
Bai, Mindong ;
Zhang, Zhitao ;
Bai, Mindi ;
Bai, Xiyao ;
Gao, Honghui .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2008, 28 (04) :405-414
[3]   Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge [J].
Gallon, Helen J. ;
Tu, Xin ;
Whitehead, J. Christopher .
PLASMA PROCESSES AND POLYMERS, 2012, 9 (01) :90-97
[4]   Carbon Dioxide Reforming of Methane Using a Dielectric Barrier Discharge Reactor: Effect of Helium Dilution and Kinetic Model [J].
Goujard, Valentin ;
Tatibouet, Jean-Michel ;
Batiot-Dupeyrat, Catherine .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2011, 31 (02) :315-325
[5]  
Indarto A, 2006, ENERGY, V31, P2986, DOI 10.1016/j.energy.2005.10.034
[6]   Microplasmas: Sources, particle kinetics, and biomedical applications [J].
Iza, Felipe ;
Kim, Gon Jun ;
Lee, Seung Min ;
Lee, Jae Koo ;
Walsh, James L. ;
Zhang, Yuantao T. ;
Kong, Michael G. .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (04) :322-344
[7]   Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material [J].
Jahanmiri, A. ;
Rahimpour, M. R. ;
Shirazi, M. Mohamadzadeh ;
Hooshmand, N. ;
Taghvaei, H. .
CHEMICAL ENGINEERING JOURNAL, 2012, 191 :416-425
[8]   Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma [J].
Kundu, Sazal K. ;
Kennedy, Eric M. ;
Gaikwad, Vaibhav V. ;
Molloy, Thomas S. ;
Dlugogorski, Bogdan Z. .
CHEMICAL ENGINEERING JOURNAL, 2012, 180 :178-189
[9]   Carbon Dioxide Reforming of Methane in Kilohertz Spark-Discharge Plasma at Atmospheric Pressure [J].
Li, Xiao-Song ;
Zhu, Bin ;
Shi, Chuan ;
Xu, Yong ;
Zhu, Ai-Min .
AICHE JOURNAL, 2011, 57 (10) :2854-2860
[10]   Methane conversion to C2 hydrocarbons using dielectric-barrier discharge reactor:: Effects of system variables [J].
Matin, Naser Seyed ;
Savadkoohi, Hasan A. ;
Feizabadi, Seyed Younos .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2008, 28 (02) :189-202