Low-temperature solution of the Sherrington-Kirkpatrick model

被引:32
|
作者
Pankov, Sergey [1 ]
机构
[1] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA
关键词
D O I
10.1103/PhysRevLett.96.197204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I propose a simple scaling ansatz for the full replica symmetry breaking solution of the Sherrington-Kirkpatrick model in the low energy sector. This solution is shown to become exact in the limit x -> 0, beta x ->infinity of the Parisi replica symmetry breaking scheme parameter x. The distribution function P(x,y) of the frozen fields y has been known to develop a linear gap at zero temperature. The scaling equations are integrated to find an exact numerical value for the slope of the gap partial derivative P(x,y)/partial derivative y parallel to(y -> 0)=0.301 046.... I also use the scaling solution to devise an inexpensive numerical procedure for computing finite time scale (x=1) quantities. The entropy, the zero field cooled susceptibility, and the local field distribution function are computed in the low-temperature limit with high precision, barely achievable by currently available methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The low-temperature free energy of the Sherrington-Kirkpatrick spin glass model
    Koukiou, F
    EUROPHYSICS LETTERS, 1996, 33 (02): : 95 - 98
  • [2] Chaos in temperature in the Sherrington-Kirkpatrick model
    Rizzo, T
    Crisanti, A
    PHYSICAL REVIEW LETTERS, 2003, 90 (13) : 1 - 137201
  • [3] On the high temperature phase of the Sherrington-Kirkpatrick model
    Talagrand, M
    ANNALS OF PROBABILITY, 2002, 30 (01): : 364 - 381
  • [5] On the replica symmetric solution for the Sherrington-Kirkpatrick model
    Shcherbina, M
    HELVETICA PHYSICA ACTA, 1997, 70 (06): : 838 - 853
  • [6] On the high temperature region of the Sherrington-Kirkpatrick model
    Talagrand, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (02): : 177 - 182
  • [7] The Sherrington-Kirkpatrick Model: An Overview
    Dmitry Panchenko
    Journal of Statistical Physics, 2012, 149 : 362 - 383
  • [8] The Sherrington-Kirkpatrick Model: An Overview
    Panchenko, Dmitry
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (02) : 362 - 383
  • [9] Quenches in the Sherrington-Kirkpatrick model
    Erba, Vittorio
    Behrens, Freya
    Krzakala, Florent
    Zdeborova, Lenka
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (08):
  • [10] STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL
    DEALMEIDA, JRL
    THOULESS, DJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05): : 983 - 990