Triple correlation sums of coefficients of cusp forms

被引:4
作者
Hulse, Thomas A. [1 ]
Kuan, Chan Ieong [2 ]
Lowry-Duda, David [3 ]
Walker, Alexander [4 ]
机构
[1] Boston Coll, Math Dept, Chestnut Hill, MA 02467 USA
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
[3] ICERM, 121 South Main St,Box E,11th Floor, Providence, RI 02903 USA
[4] Rutgers Univ Hill, Ctr Math Sci, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
基金
英国工程与自然科学研究理事会;
关键词
Modular forms; Convolution sums; Multiple Dirichlet series; Spectral theory; FOURIER COEFFICIENTS; MOMENT;
D O I
10.1016/j.jnt.2020.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce nontrivial asymptotic estimates for shifted sums of the form Sigma a(h)b(m)c(2m - h), in which a(n), b(n), c(n) are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to strengthen them under the Riemann Hypothesis. As an application, we show that there are infinitely manythree term arithmetic progressions n - h, n, n + h such that a(n - h)a(n)a(n + h) not equal 0. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 19 条