Convolutional Autoencoder based Feature Extraction in Radar Data Analysis

被引:16
作者
Lee, Hansoo [1 ]
Kim, Jonggeun [1 ]
Kim, Baekcheon [1 ]
Kim, Sungshin [1 ]
机构
[1] Pusan Natl Univ, Dept Elect & Comp Engn, Busan 46241, South Korea
来源
2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS) | 2018年
基金
新加坡国家研究基金会;
关键词
convolutional autoencoder; feature extraction; radar images; DIMENSIONALITY; CLASSIFICATION; DEEP;
D O I
10.1109/SCIS-ISIS.2018.00023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the challenging research topics is a fast, accurate, and human-like image processing method. The convolutional neural network recently shows optimistic results, but it needs a vast amount of computational resources. Utilizing feature extraction and dimensionality reduction algorithm might be a solution to increase computational efficiency. In this paper, we implemented a convolutional autoencoder for performing feature extraction and dimensionality reduction which not only can solve nonlinear problems but also easily combine the convolutional neural network. The implemented convolutional autoencoder derives remarkable reconstruction error in the experiments using the two-dimensional radar data.
引用
收藏
页码:81 / 84
页数:4
相关论文
共 12 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]  
Atlas D., 2015, RAD MET BATT MEM 40
[3]   HYPERSPECTRAL IMAGE CLASSIFICATION AND DIMENSIONALITY REDUCTION - AN ORTHOGONAL SUBSPACE PROJECTION APPROACH [J].
HARSANYI, JC ;
CHANG, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (04) :779-785
[4]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[5]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430
[6]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[7]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[8]   Why Does Deep and Cheap Learning Work So Well? [J].
Lin, Henry W. ;
Tegmark, Max ;
Rolnick, David .
JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (06) :1223-1247
[9]   Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction [J].
Masci, Jonathan ;
Meier, Ueli ;
Ciresan, Dan ;
Schmidhuber, Juergen .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 :52-59
[10]   Classification of ground clutter and anomalous propagation using dual-polarization weather radar [J].
Rico-Ramirez, Miguel Angel ;
Cluckie, Ian David .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07) :1892-1904