Extremal problems, inequalities, and classical orthogonal polynomials

被引:19
作者
Agarwal, RP
Milovanovic, GV
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
[2] Univ Nish, Fac Elect Engn, Dept Math, YU-18000 Nish, Serbia, Yugoslavia
关键词
classical orthogonal polynomials; characterization; weight function; norm; extremal problems; inequalities; Markov-Bernstein inequality; Landau inequality; Kolmogoroff type polynomial inequalities; differential equation;
D O I
10.1016/S0096-3003(01)00070-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this survey paper we give a short account on characterizations for very classical orthogonal polynomials via extremal problems and the corresponding inequalities. Besides the basic properties of the classical orthogonal polynomials, we consider polynomial inequalities of Landau and Kolmogoroff type, some weighted polynomial inequalities in L-2-norm of Markov-Bernstein type, as well as the corresponding connections with the classical orthogonal polynomials. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 48 条
[1]  
ACZEL J, 1953, ACTA MATH ACAD SCI H, V4, P315
[2]  
Agarwal R. P., 1991, PROGR APPROXIMATION, P1
[3]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[4]   Landau and Kolmogoroff type polynomial inequalities [J].
Alves, CRR ;
Dimitrov, DK .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (04) :327-338
[5]  
ANDREWS GE, 1985, LECT NOTES MATH, V1171, P36
[6]  
[Anonymous], 1997, SPECIAL FUNCTIONS Q
[7]  
ASKEY R, 1985, MEMOIRS AMS, V319
[8]   THE HAHN AND MEIXNER POLYNOMIALS OF AN IMAGINARY ARGUMENT AND SOME OF THEIR APPLICATIONS [J].
ATAKISHIYEV, NM ;
SUSLOV, SK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (10) :1583-1596
[9]  
Bateman H., 1953, Higher transcendental functions, VII
[10]  
Bernard S. G., 2012, Mem. Cl. Sci. Acad. Roy. Belg., P1