We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.
机构:
Univ La Laguna, Fac Matemat, Dept Matemat Fundamental, San Cristobal la Laguna 38271, Tenerife, SpainUniv La Laguna, Fac Matemat, Dept Matemat Fundamental, San Cristobal la Laguna 38271, Tenerife, Spain
Garcia Barroso, Evelia R.
Gwozdziewicz, Janusz
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ, Dept Math, PL-25314 Kielce, PolandUniv La Laguna, Fac Matemat, Dept Matemat Fundamental, San Cristobal la Laguna 38271, Tenerife, Spain
机构:
Univ Paris 07, Inst Math, UMR CNRS 7586, Equipe Geometrie & Dynam, F-75251 Paris 05, FranceUniv Paris 07, Inst Math, UMR CNRS 7586, Equipe Geometrie & Dynam, F-75251 Paris 05, France
机构:
Inst Math Jussieu Paris River Gauche, Equipe Geometrie & Dynam, Paris, FranceInst Math Jussieu Paris River Gauche, Equipe Geometrie & Dynam, Paris, France
Mourtda, Hussein
Plenat, Camille
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CMI, Grp AGT, I2M, Technopole Chateau Gombert, Marseille, FranceInst Math Jussieu Paris River Gauche, Equipe Geometrie & Dynam, Paris, France