Plasma leptin and vascular endothelial growth factor (VEGF) in normal subjects at high altitude (5050 m)

被引:3
|
作者
Morici, G. [1 ,2 ]
Bonanno, A. [2 ]
Licciardi, A. [1 ]
Valli, G. [3 ]
Passino, C. [4 ]
Bonardi, D. [5 ]
Locorotondo, N. [6 ]
Profita, M. [2 ]
Palange, P. [3 ,6 ]
Cogo, A. [7 ]
Bonsignore, M. R. [2 ,8 ]
机构
[1] Univ Palermo, Dept Expt Biomed & Clin Neurosci BIONeC, I-90134 Palermo, Italy
[2] CNR, IBIM, Palermo, Italy
[3] Univ Roma La Sapienza, Dept Clin Med, Rome, Italy
[4] CNR, Inst Clin Physiol, I-56100 Pisa, Italy
[5] Univ Milan, IRCCS, Inst Resp Dis, I-20122 Milan, Italy
[6] Fdn Lorrillard Spencer Cenci, Rome, Italy
[7] Univ Ferrara, Sect Resp Dis, Dept Clin & Expt Med, I-44100 Ferrara, Italy
[8] Univ Palermo, Pneumol Sect, Biomed Dept Internal & Specialist Med DiBiMIS, I-90134 Palermo, Italy
关键词
Hypoxia; maximal exercise test; metabolism; periodic breathing; sleep; INTERMITTENT HYPOXIA; SLEEP; PROGENITORS; ACTIVATION; PRESSURE;
D O I
10.3109/13813455.2013.814679
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Context: High altitude (HA) is a model of severe hypoxia exposure in humans. We hypothesized that nocturnal hypoxemia or acute maximal exercise at HA might affect plasma leptin and VEGF levels. Objectives: Plasma leptin, VEGF and other metabolic variables were studied after nocturnal pulse oximetry and after maximal exercise in healthy lowlanders on the 3rd-4th day of stay in Lobuche (5050 m, HA) and after return to sea level (SL). Results: Leptin was similar at SL or HA in both pre- and post-exercise conditions. Pre-exercise VEGF at HA was lower, and cortisol was higher, than at SL, suggesting that nocturnal intermittent hypoxia associated with periodic breathing at HA might affect these variables. Conclusions: Leptin levels appear unaffected at HA, whereas nocturnal hypoxic stress may affect plasma VEGF. Future HA studies should investigate the possible role of nocturnal intermittent hypoxemia on metabolism.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [1] Polymorphisms of human vascular endothelial growth factor gene in high-altitude pulmonary oedema susceptible subjects
    Hanaoka, Masayuki
    Droma, Yunden
    Ota, Masao
    Ito, Michiko
    Katsuyama, Yoshihiko
    Kubo, Keishi
    RESPIROLOGY, 2009, 14 (01) : 46 - 52
  • [2] Vascular endothelial growth factor (VEGF) and its receptors
    Neufeld, G
    Cohen, T
    Gengrinovitch, S
    Poltorak, Z
    FASEB JOURNAL, 1999, 13 (01) : 9 - 22
  • [3] Role of vascular endothelial growth factor (VEGF) in thymus of mice under normal conditions and with tumor growth
    Kisseleva, E. P.
    Krylov, A. V.
    Lyamina, I. V.
    Kudryavtsev, I. V.
    Lioudyno, V. I.
    BIOCHEMISTRY-MOSCOW, 2016, 81 (05) : 491 - 501
  • [4] Vascular endothelial growth factor (VEGF) in normal human corneal epithelium: Detection and physiological importance
    van Setten, GB
    ACTA OPHTHALMOLOGICA SCANDINAVICA, 1997, 75 (06): : 649 - 652
  • [5] Effects of high-altitude exposure on vascular endothelial growth factor levels in man
    Walter, R
    Maggiorini, M
    Scherrer, U
    Contesse, J
    Reinhart, WH
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2001, 85 (1-2) : 113 - 117
  • [6] Plasma vascular endothelial growth factor (VEGF) measured in seventy dogs with spontaneously occurring tumours
    Wergin, MC
    Kaser-Hotz, B
    IN VIVO, 2004, 18 (01): : 15 - 19
  • [7] Vascular endothelial growth factor (VEGF) signaling in tumor progression
    Roskoski, Robert, Jr.
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2007, 62 (03) : 179 - 213
  • [8] The splice variants of vascular endothelial growth factor (VEGF) and their receptors
    Robinson, CJ
    Stringer, SE
    JOURNAL OF CELL SCIENCE, 2001, 114 (05) : 853 - 865
  • [10] Increase in Vascular Endothelial Growth Factor (VEGF) Expression and the Pathogenesis of iMCD-TAFRO
    Srkalovic, Gordan
    Nijim, Sally
    Srkalovic, Maya Blanka
    Fajgenbaum, David
    BIOMEDICINES, 2024, 12 (06)