Pontryagin maximum principle for optimal control of variational inequalities

被引:22
作者
Bergounioux, M
Zidani, H
机构
[1] Univ Orleans, Dept Math, UMR 6628, F-45067 Orleans 2, France
[2] Univ Toulouse 3, Lab MIP, UMR 5640, UFR MIG, F-31062 Toulouse, France
关键词
variational inequalities; optimal control; Pontryagin principle;
D O I
10.1137/S0363012997328087
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate optimal control problems governed by variational inequalities. We present a method for deriving optimality conditions in the form of Pontryagin's principle. The main tools used are the Ekeland's variational principle combined with penalization and spike variation techniques.
引用
收藏
页码:1273 / 1290
页数:18
相关论文
共 24 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
BARBU V., 1986, Convexity and Optimization in Banach Spaces
[3]  
Barbu V., 1993, MATH SCI ENG, P190
[4]   Optimal control of problems governed by abstract elliptic variational inequalities with state constraints [J].
Bergounioux, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :273-289
[5]  
BERGOUNIOUX M, 1996, NUMER FUNCT ANAL OPT, V15, P517
[6]   AN EXTENSION OF PONTRYAGINS PRINCIPLE FOR STATE-CONSTRAINED OPTIMAL-CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS AND VARIATIONAL-INEQUALITIES [J].
BONNANS, F ;
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :274-298
[7]   PONTRYAGIN PRINCIPLE IN THE CONTROL OF SEMILINEAR ELLIPTIC VARIATIONAL-INEQUALITIES [J].
BONNANS, JF ;
TIBA, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (03) :299-312
[8]  
CASAS E, 1998, PONTRYAGINS PRINCIPL
[9]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[10]  
Di Benedetto E., 1986, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze Ser., V4, P487