Indefinite Support Vector Regression

被引:2
|
作者
Schleif, Frank-Michael [1 ,2 ]
机构
[1] Univ Appl Sci Wuerzburg Schweinfurt, D-97074 Wurzburg, Germany
[2] Univ Birmingham, Sch Comp Sci Edgbaston, Birmingham B15 2TT, W Midlands, England
关键词
CLASSIFICATION; RECOGNITION; DISTANCE;
D O I
10.1007/978-3-319-68612-7_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-metric proximity measures got wide interest in various domains such as life sciences, robotics and image processing. The majority of learning algorithms for these data are focusing on classification problems. Here we derive a regression algorithm for indefinite data representations based on the support vector machine. The approach avoids heuristic eigen spectrum modifications or costly proxy matrix approximations, as used in general. We evaluate the method on a number of benchmark data using an indefinite measure.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [31] Deep Support Vector Classification and Regression
    Diaz-Vico, David
    Prada, Jesus
    Omari, Adil
    Dorronsoro, Jose R.
    FROM BIOINSPIRED SYSTEMS AND BIOMEDICAL APPLICATIONS TO MACHINE LEARNING, PT II, 2019, 11487 : 33 - 43
  • [32] Support Vector Regression for Speaker Verification
    Lopez-Moreno, Ignacio
    Mateos-Garcia, Ismael
    Ramos, Daniel
    Gonzalez-Rodriguez, Joaquin
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 1881 - 1884
  • [33] Robust truncated support vector regression
    Zhao, Yong-Ping
    Sun, Jian-Guo
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5126 - 5133
  • [34] Regression depth and support vector machine
    Christmann, Andreas
    DATA DEPTH: ROBUST MULTIVARIATE ANALYSIS, COMPUTATIONAL GEOMETRY AND APPLICATIONS, 2006, 72 : 71 - 85
  • [35] Fuzzy ordinal support vector regression
    Liu, GL
    Peng, B
    ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 8, 2005, : 577 - 581
  • [36] Nonparallel Support Vector Ordinal Regression
    Wang, Huadong
    Shi, Yong
    Niu, Lingfeng
    Tian, Yingjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (10) : 3306 - 3317
  • [37] Smooth twin support vector regression
    Xiaobo Chen
    Jian Yang
    Jun Liang
    Qiaolin Ye
    Neural Computing and Applications, 2012, 21 : 505 - 513
  • [38] Support vector regression for controller approximation
    Tao, C. W.
    Su, T. H.
    Chuang, C. C.
    Jeng, J. T.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 812 - +
  • [39] Support vector regression with penalized likelihood
    Uemoto, Takumi
    Naito, Kanta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [40] Efficient Structured Support Vector Regression
    Jia, Ke
    Wang, Lei
    Liu, Nianjun
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 586 - 598