Indefinite Support Vector Regression

被引:2
|
作者
Schleif, Frank-Michael [1 ,2 ]
机构
[1] Univ Appl Sci Wuerzburg Schweinfurt, D-97074 Wurzburg, Germany
[2] Univ Birmingham, Sch Comp Sci Edgbaston, Birmingham B15 2TT, W Midlands, England
关键词
CLASSIFICATION; RECOGNITION; DISTANCE;
D O I
10.1007/978-3-319-68612-7_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-metric proximity measures got wide interest in various domains such as life sciences, robotics and image processing. The majority of learning algorithms for these data are focusing on classification problems. Here we derive a regression algorithm for indefinite data representations based on the support vector machine. The approach avoids heuristic eigen spectrum modifications or costly proxy matrix approximations, as used in general. We evaluate the method on a number of benchmark data using an indefinite measure.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [21] Projection support vector regression algorithms for data regression
    Peng, Xinjun
    Xu, Dong
    KNOWLEDGE-BASED SYSTEMS, 2016, 112 : 54 - 66
  • [22] Indefinite twin support vector machine with DC functions programming
    An, Yuexuan
    Xue, Hui
    PATTERN RECOGNITION, 2022, 121
  • [23] Online learning for quantile regression and support vector regression
    Hu, Ting
    Xiang, Dao-Hong
    Zhou, Ding-Xuan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3107 - 3122
  • [24] Counting People With Support Vector Regression
    Wang, Yameng
    Lian, Huicheng
    Chen, Pei
    Lu, Zhenzhen
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 139 - 143
  • [25] An ε-twin support vector machine for regression
    Yuan-Hai Shao
    Chun-Hua Zhang
    Zhi-Min Yang
    Ling Jing
    Nai-Yang Deng
    Neural Computing and Applications, 2013, 23 : 175 - 185
  • [26] Support vector regression for structural identification
    Zhang, J
    Sato, T
    Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace, Pts 1 and 2, 2005, 5765 : 720 - 730
  • [27] Minimum variance support vector regression
    Wang, Xiao-Ming
    Wang, Shi-Tong
    Kongzhi yu Juece/Control and Decision, 2010, 25 (04): : 556 - 561
  • [28] A robust formulation for support vector regression
    Zhong, Ping
    CIS WORKSHOPS 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY WORKSHOPS, 2007, : 236 - 239
  • [29] On Lagrangian twin support vector regression
    S. Balasundaram
    M. Tanveer
    Neural Computing and Applications, 2013, 22 : 257 - 267
  • [30] Monotone support vector quantile regression
    Shim, Jooyong
    Seok, Kyungha
    Hwang, Changha
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) : 5180 - 5193