Indefinite Support Vector Regression

被引:2
|
作者
Schleif, Frank-Michael [1 ,2 ]
机构
[1] Univ Appl Sci Wuerzburg Schweinfurt, D-97074 Wurzburg, Germany
[2] Univ Birmingham, Sch Comp Sci Edgbaston, Birmingham B15 2TT, W Midlands, England
关键词
CLASSIFICATION; RECOGNITION; DISTANCE;
D O I
10.1007/978-3-319-68612-7_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-metric proximity measures got wide interest in various domains such as life sciences, robotics and image processing. The majority of learning algorithms for these data are focusing on classification problems. Here we derive a regression algorithm for indefinite data representations based on the support vector machine. The approach avoids heuristic eigen spectrum modifications or costly proxy matrix approximations, as used in general. We evaluate the method on a number of benchmark data using an indefinite measure.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [1] Support vector machine classification with indefinite kernels
    Luss, Ronny
    d'Aspremont, Alexandre
    MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (2-3) : 97 - 118
  • [2] Balanced Support Vector Regression
    Orchel, Marcin
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II (ICAISC 2015), 2015, 9120 : 727 - 738
  • [3] Relaxed support vector regression
    Panagopoulos, Orestis P.
    Xanthopoulos, Petros
    Razzaghi, Talayeh
    Seref, Onur
    ANNALS OF OPERATIONS RESEARCH, 2019, 276 (1-2) : 191 - 210
  • [4] Automated support vector regression
    Harrington, Peter de B.
    JOURNAL OF CHEMOMETRICS, 2017, 31 (04)
  • [5] Support Vector Regression for GDOP
    Su, Wei-Han
    Wu, Chih-Hung
    ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, PROCEEDINGS, 2008, : 302 - +
  • [6] Robust ε-Support Vector Regression
    Lv, Yuan
    Gan, Zhong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [7] Relaxed support vector regression
    Orestis P. Panagopoulos
    Petros Xanthopoulos
    Talayeh Razzaghi
    Onur Şeref
    Annals of Operations Research, 2019, 276 : 191 - 210
  • [8] Support vector ordinal regression
    Chu, Wei
    Keerthi, S. Sathiya
    NEURAL COMPUTATION, 2007, 19 (03) : 792 - 815
  • [9] A tutorial on support vector regression
    Smola, AJ
    Schölkopf, B
    STATISTICS AND COMPUTING, 2004, 14 (03) : 199 - 222
  • [10] A tutorial on support vector regression
    Alex J. Smola
    Bernhard Schölkopf
    Statistics and Computing, 2004, 14 : 199 - 222