On the Ginzburg-Landau model of a superconducting ball in a uniform field

被引:22
作者
Alama, S [1 ]
Bronsard, L [1 ]
Montero, JA [1 ]
机构
[1] McMaster Univ, Dept Math & Stats, Hamilton, ON L8S 4K1, Canada
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2006年 / 23卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
calculus of variations; elliptic partial differential equations; rectifiable currents; superconductivity;
D O I
10.1016/j.anihpc.2005.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the three-dimensional Ginzburg-Landau model for a solid spherical superconductor in a uniform magnetic field, in the limit as the Ginzburg-Landau parameter K = 1/epsilon -> infinity. By studying a limiting functional we identify a candidate for the lower critical field H-C1, the value of the applied field strength at which minimizers first exhibit vortices. For applied fields of this strength we show the existence of locally minimizing solutions with vortices located along a diameter of the sphere parallel to the applied field direction. To analyze these problems we use a combination of techniques, involving least perimeter problems, weak Jacobians and rectifiable currents, and special Hodge decompositions. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:237 / 267
页数:31
相关论文
共 27 条
[1]   Properties of a single vortex solution in a rotating Bose Einstein condensate [J].
Aftalion, A ;
Jerrard, RL .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (09) :713-718
[2]  
ALBERTI G, 2003, VARIATIONAL CONVERGE
[3]  
BETHUEL F, 1995, ANN I H POINCARE-AN, V12, P243
[4]   Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) :432-520
[5]  
BETHUEL F, 1994, GINZBURGLANDAU VORTI
[6]  
CHIRON D, IN PRESS COMMUN CONT
[7]  
Federer H., 2014, GEOMETRIC MEASURE TH
[8]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF
[9]   The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model [J].
Giorgi, T ;
Phillips, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (02) :341-359
[10]  
Giusti E., 1984, MINIMAL SURFACES FUN