Knowledge-Enhanced Iterative Instruction Generation and Reasoning for Knowledge Base Question Answering

被引:4
作者
Du, Haowei [1 ]
Huang, Quzhe [1 ]
Zhang, Chen [1 ]
Zhao, Dongyan [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
来源
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I | 2022年 / 13551卷
关键词
Knowledge Base Question Answering; Iterative Instruction Generating and Reasoning; Error revision;
D O I
10.1007/978-3-031-17120-8_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-hop Knowledge Base Question Answering (KBQA) aims to find the answer entity in a knowledge base which is several hops from the topic entity mentioned in the question. Existing Retrievalbased approaches first generate instructions from the question and then use them to guide the multi-hop reasoning on the knowledge graph. As the instructions are fixed during the whole reasoning procedure and the knowledge graph is not considered in instruction generation, the model cannot revise its mistake once it predicts an intermediate entity incorrectly. To handle this, we propose KBIGER (Knowledge Base Iterative Instruction GEnerating and Reasoning), a novel and efficient approach to generate the instructions dynamically with the help of reasoning graph. Instead of generating all the instructions before reasoning, we take the (k - 1)-th reasoning graph into consideration to build the k-th instruction. In this way, the model could check the prediction from the graph and generate new instructions to revise the incorrect prediction of intermediate entities. We do experiments on two multi-hop KBQA benchmarks and outperform the existing approaches, becoming the newstate-of-the-art. Further experiments show our method does detect the incorrect prediction of intermediate entities and has the ability to revise such errors.
引用
收藏
页码:431 / 444
页数:14
相关论文
共 47 条
  • [1] Knowledge-Enhanced Retrieval: A Scheme for Question Answering
    Lin, Fake
    Cao, Weican
    Zhang, Wen
    Chen, Liyi
    Hong, Yuan
    Xu, Tong
    Tan, Chang
    CCKS 2021 - EVALUATION TRACK, 2022, 1553 : 102 - 113
  • [2] A Dynamic Graph Reasoning Model with an Auxiliary Task for Knowledge Base Question Answering
    Wu, Zhichao
    Tian, Xuan
    ELECTRONICS, 2024, 13 (24):
  • [3] Improving Core Path Reasoning for the Weakly Supervised Knowledge Base Question Answering
    Hu, Nan
    Bi, Sheng
    Qi, Guilin
    Wang, Meng
    Hua, Yuncheng
    Shen, Shirong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT I, 2022, : 162 - 170
  • [4] Complex Knowledge Base Question Answering: A Survey
    Lan, Yunshi
    He, Gaole
    Jiang, Jinhao
    Jiang, Jing
    Zhao, Wayne Xin
    Wen, Ji-Rong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11196 - 11215
  • [5] Intent Identification for Knowledge Base Question Answering
    Dai, Feifei
    Feng, Chong
    Wang, Zhiqiang
    Pei, Yuxia
    Huang, Heyan
    2017 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2017, : 96 - 99
  • [6] Knowledge Base Question Answering via Structured Query Generation using Question domain
    Li, Jiecheng
    Peng, Zizhen
    Zhu, Xiaoying
    Lu, Keda
    2022 IEEE 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS, IUCC/CIT/DSCI/SMARTCNS, 2022, : 394 - 400
  • [7] Research on the method of knowledge base question answering
    Jin, Tao
    Wang, Hai-Jun
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 527 - 530
  • [8] Multi-hop Knowledge Base Question Answering with an Iterative Sequence Matching Model
    Lan, Yunshi
    Wang, Shuohang
    Jiang, Jing
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 359 - 368
  • [9] Knowledge Base Question Answering With Attentive Pooling for Question Representation
    Wang, Run-Ze
    Ling, Zhen-Hua
    Hu, Yu
    IEEE ACCESS, 2019, 7 : 46773 - 46784
  • [10] Improving Complex Knowledge Base Question Answering with Relation-Aware Subgraph Retrieval and Reasoning Network
    Luo, Dan
    Sheng, Jiawei
    Xu, Hongbo
    Wang, Lihong
    Wang, Bin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,