Extreme learning machine Cox model for high-dimensional survival analysis

被引:31
作者
Wang, Hong [1 ]
Li, Gang [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Univ Calif Los Angeles, UCLA Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
关键词
censored data; extreme learning machine; machine learning; regularized Cox model; survival analysis; NEURAL-NETWORK MODELS; OVARIAN-CANCER; FEEDFORWARD NETWORKS; VARIABLE SELECTION; REGRESSION; PREDICTION; FAILURE; LENGTH; RANK;
D O I
10.1002/sim.8090
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some interesting recent studies have shown that neural network models are useful alternatives in modeling survival data when the assumptions of a classical parametric or semiparametric survival model such as the Cox (1972) model are seriously violated. However, to the best of our knowledge, the plausibility of adapting the emerging extreme learning machine (ELM) algorithm for single-hidden-layer feedforward neural networks to survival analysis has not been explored. In this paper, we present a kernel ELM Cox model regularized by an L-0-based broken adaptive ridge (BAR) penalization method. Then, we demonstrate that the resulting method, referred to as ELMCoxBAR, can outperform some other state-of-art survival prediction methods such as L-1- or L-2-regularized Cox regression, random survival forest with various splitting rules, and boosted Cox model, in terms of its predictive performance using both simulated and real world datasets. In addition to its good predictive performance, we illustrate that the proposed method has a key computational advantage over the above competing methods in terms of computation time efficiency using an a real-world ultra-high-dimensional survival data.
引用
收藏
页码:2139 / 2156
页数:18
相关论文
共 65 条
[1]   Selection of artificial neural network models for survival analysis with Genetic Algorithms [J].
Ambrogi, Federico ;
Lama, Nicola ;
Boracchi, Patrizia ;
Biganzoli, Elia .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :30-42
[2]  
Angelov P., 2016, Dans ESANN
[3]  
[Anonymous], 2017, ARXIV171200561
[4]  
[Anonymous], NATURE MED
[5]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[6]  
[Anonymous], 2016, STAT-US
[7]  
[Anonymous], PAC S BIOC 2003
[8]  
[Anonymous], AUSTRALIA
[9]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[10]   High-Dimensional Cox Models: The Choice of Penalty as Part of the Model Building Process [J].
Benner, Axel ;
Zucknick, Manuela ;
Hielscher, Thomas ;
Ittrich, Carina ;
Mansmann, Ulrich .
BIOMETRICAL JOURNAL, 2010, 52 (01) :50-69