The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis

被引:312
作者
DeYoung, BJ
Bickle, KL
Schrage, KJ
Muskett, P
Patel, K
Clark, SE
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[2] John Innes Ctr, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
关键词
meristem; CLAVATA; kinase; Arabidopsis; RLK; signal transduction;
D O I
10.1111/j.1365-313X.2005.02592.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Organ formation at shoot and flower meristems in plants requires the maintenance of a population of centrally located stem cells and the differentiation of peripherally located daughter cells. The CLAVATA (CLV) gene products in Arabidopsis, including the CLV1 receptor-kinase, regulate this process by promoting the differentiation of stem cells on the meristem flanks. Here, we have analyzed the developmental roles of the CLV1-related BAM1 (derived from barely any meristem 1), BAM2 and BAM3 receptor-like kinases. Loss-of-function alleles of these receptors lead to phenotypes consistent with the loss of stem cells at the shoot and flower meristem, suggesting that their developmental role is opposite to that of CLV1. These closely related receptors are further distinguished from CLV1, whose expression and function is highly specific, by having broad expression patterns and multiple developmental roles. These include a requirement for BAM1, BAM2 and BAM3 in the development of high-ordered vascular strands within the leaf and a correlated control of leaf shape, size and symmetry. In addition, BAM1, BAM2 and BAM3 are required for male gametophyte development, as well as ovule specification and function. Significantly, the differing roles of CLV1 and BAM receptors in meristem and organ development are largely driven by differences in expression patterns.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 52 条
  • [1] DIFFERENTIAL STAINING OF ABORTED AND NONABORTED POLLEN
    ALEXANDER, MP
    [J]. STAIN TECHNOLOGY, 1969, 44 (03): : 117 - +
  • [2] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [3] BARTON MK, 1993, DEVELOPMENT, V119, P823
  • [4] A gene expression map of the Arabidopsis root
    Birnbaum, K
    Shasha, DE
    Wang, JY
    Jung, JW
    Lambert, GM
    Galbraith, DW
    Benfey, PN
    [J]. SCIENCE, 2003, 302 (5652) : 1956 - 1960
  • [5] thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase
    Bommert, P
    Lunde, C
    Nardmann, J
    Vollbrecht, E
    Running, M
    Jackson, D
    Hake, S
    Werr, W
    [J]. DEVELOPMENT, 2005, 132 (06): : 1235 - 1245
  • [6] Formation and maintenance of the shoot apical meristem
    Bowman, JL
    Eshed, Y
    [J]. TRENDS IN PLANT SCIENCE, 2000, 5 (03) : 110 - 115
  • [7] Dependence of stem cell fate in Arabidopsis an a feedback loop regulated by CLV3 activity
    Brand, U
    Fletcher, JC
    Hobe, M
    Meyerowitz, EM
    Simon, R
    [J]. SCIENCE, 2000, 289 (5479) : 617 - 619
  • [8] EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis
    Canales, C
    Bhatt, AM
    Scott, R
    Dickinson, H
    [J]. CURRENT BIOLOGY, 2002, 12 (20) : 1718 - 1727
  • [9] CLARK SE, 1993, DEVELOPMENT, V119, P397
  • [10] Clark SE, 1996, DEVELOPMENT, V122, P1567