Controlling magnetic properties of iron oxide nanoparticles using post-synthesis thermal treatment

被引:16
作者
Panchal, Vineet [1 ]
Bhandarkar, Upendra [2 ]
Neergat, Manoj [1 ]
Suresh, K. G. [3 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2014年 / 114卷 / 02期
关键词
GAMMA-FE2O3; RELAXATION; OXIDATION;
D O I
10.1007/s00339-013-7610-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Changes in morphological and magnetic properties of Fe3O4 nanoparticles before and after annealing are investigated in the present work. The nanoparticles are synthesized in a standard capacitively coupled plasma enhanced chemical vapour deposition system with two electrodes using ferrocene as the source compound. Post annealing, due to the sintering process, the particles fuse along with recrystallization. This results in increased size of the nanoparticles and the interparticle interaction, which play a major role in deciding the magnetic properties. X-ray diffraction patterns of the samples before and after annealing indicate a phase change from Fe3O4 to Fe2O3. Annealing at 200 C-a similar to causes the apparent saturation magnetization to increase from 6 emu g(-1) to 15 emu g(-1). When annealed at 500 C-a similar to, the magnetic properties of the nanoparticles resemble those of the bulk material. The evidence for the transition from a superparamagnetic state to a collective state is also observed when annealed at 500 C-a similar to. Variation of the magnetic relaxation data with annealing also reflects the change in the magnetic state brought about by the annealing. The correlation between annealing temperature and the magnetic properties can be used to obtain nanocrystallites of iron oxide with different sizes and magnetic properties.
引用
收藏
页码:537 / 544
页数:8
相关论文
共 37 条
[1]   Memory and aging effects in NiO nanoparticles [J].
Bisht, Vijay ;
Rajeev, K. P. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (01)
[2]  
Cornell R., 2003, IRON OXIDES STRUCTUR, P366
[3]   Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy [J].
De, D. ;
Karmakar, A. ;
Bhunia, M. K. ;
Bhaumik, A. ;
Majumdar, S. ;
Giri, S. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
[4]   The effects of vacuum annealing on the structure and surface chemistry of iron:nickel alloy nanoparticles [J].
Dickinson, Michelle ;
Scott, Thomas B. ;
Crane, Richard A. ;
Riba, Olga ;
Barnes, Robert J. ;
Hughes, Gareth M. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (06) :2081-2092
[5]  
Dormann JL, 1997, ADV CHEM PHYS, V98, P283, DOI 10.1002/9780470141571.ch4
[6]   Characterization of nanocrystalline γ-Fe2O3 prepared by wet chemical method [J].
Ennas, G ;
Marongiu, G ;
Musinu, A ;
Falqui, A ;
Ballirano, P ;
Caminiti, R .
JOURNAL OF MATERIALS RESEARCH, 1999, 14 (04) :1570-1575
[7]   Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles [J].
García-Otero, J ;
Porto, M ;
Rivas, J ;
Bunde, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (01) :167-170
[8]   Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature [J].
Gnanaprakash, G. ;
Ayyappan, S. ;
Jayakumar, T. ;
Philip, John ;
Raj, Baldev .
NANOTECHNOLOGY, 2006, 17 (23) :5851-5857
[9]  
Gubin S., 2009, MAGNETIC NANOPARTICL, P224
[10]   Interplay between crystallization and particle growth during the isothermal annealing of colloidal iron oxide nanoparticles [J].
Haddad, Paula S. ;
Rocha, Tulio R. ;
Souza, Edvaldo A. ;
Martins, Tatiana M. ;
Knobel, Marcelo ;
Zanchet, Daniela .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 339 (02) :344-350