An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis

被引:179
作者
Ren, Xiaozhi [1 ]
Han, Yiming [2 ]
Wang, Jie [1 ]
Jiang, Yuqi [1 ]
Yi, Zhengfang [2 ]
Xu, He [1 ]
Ke, Qinfei [1 ]
机构
[1] Shanghai Normal Univ, Coll Life & Environm Sci, 100 Guilin Rd, Shanghai 200234, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Regulatory Biol, Inst Biomed Sci & Sch Life Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrospun membranes; Aligned porous structure; Controlled drug delivery; Angiogenesis; Diabetic wound healing; GROWTH-FACTOR; NANOSTRUCTURED FIBERS; SKIN REGENERATION; IN-VITRO; NANOFIBERS; DRESSINGS; RELEASE; DIMETHYLOXALYLGLYCINE; NANOTOPOGRAPHY; NANOPARTICLES;
D O I
10.1016/j.actbio.2018.02.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A chronic wound in diabetic patients is usually characterized by poor angiogenesis and delayed wound closure. The exploration of efficient strategy to significantly improve angiogenesis in the diabetic wound bed and thereby accelerate wound healing is still a significant challenge. Herein, we reported a kind of aligned porous poly (L-lactic acid) (PLLA) electrospun fibrous membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS) for diabetic wound healing. The PLLA electrospun fibers aligned in a single direction and there were ellipse-shaped nano-pores in situ generated onto the surface of fibers, while the DS were well distributed in the fibers and the DMOG as well as Si ion could be controlled released from the nanopores on the fibers. The in vitro results revealed that the aligned porous composite membranes (DS-PL) could stimulate the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) compared with the pure PLLA membranes. The in vivo study further demonstrated that the prepared DS-PL membranes significantly improved neo-vascularization, re-epithelialization and collagen formation as well as inhibited inflammatory reaction in the diabetic wound bed, which eventually stimulated the healing of the diabetic wound. Collectively, these results suggest that the combination of hierarchical structures (nano pores on the aligned fibers) with the controllable released DMOG drugs as well as Si ions from the membranes, which could create a synergetic effect on the rapid stimulation of angiogenesis in the diabetic wound bed, is a potential novel therapeutic strategy for highly efficient diabetic wound healing. Statement of Significance A chronic wound in diabetic patients is usually characterized by the poor angiogenesis and the delayed wound closure. The main innovation of this study is to design a new kind of skin tissue engineered scaffold, aligned porous poly (L-lactic acid) (PLLA) electrospun membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS), which could significantly improve angiogenesis in the diabetic wound bed and thereby accelerate diabetic wound healing. The results revealed that the electrospun fibers with ellipse-shaped nano-pores on the surface were aligned in a single direction, while there were DS particles distributed in the fibers and the DMOG as well as Si ions could be controllably released from the nanopores on the fibers. The in vitro studies demonstrated that the hierarchical nanostructures (nanopores on the aligned fibers) and the controllable released chemical active agents (DMOG drugs and Si ions) from the DS-PL membranes could exert a synergistic effect on inducing the endothelial cell proliferation, migration and differentiation. Above all, the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization as well as inhibited inflammation reaction in the wound sites, which eventually stimulated the healing of diabetic wounds in vivo. The significance of the current study is that the combination of the hierarchical aligned porous nanofibrous structure with DMOG-loaded MSNs incorporated in electrospun fibers may suggest a high-efficiency strategy for chronic wound healing. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 153
页数:14
相关论文
共 58 条
[1]   Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects [J].
Abrigo, Martina ;
McArthur, Sally L. ;
Kingshott, Peter .
MACROMOLECULAR BIOSCIENCE, 2014, 14 (06) :772-792
[2]  
Alenghat Francis J, 2002, Sci STKE, V2002, ppe6, DOI 10.1126/stke.2002.119.pe6
[3]   Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds [J].
Andreu, Vanesa ;
Mendoza, Gracia ;
Arruebo, Manuel ;
Irusta, Silvia .
MATERIALS, 2015, 8 (08) :5154-5193
[4]  
Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO
[5]  
2-8
[6]   Stabilization of HIF-1α is critical to improve wound healing in diabetic mice [J].
Botusan, Ileana Ruxandra ;
Sunkari, Vivekananda Gupta ;
Savu, Octavian ;
Catrina, Anca Irinel ;
Grunler, Jacob ;
Lindberg, Stina ;
Pereira, Teresa ;
Yla-Herttuala, Seppo ;
Poellinger, Lorenz ;
Brismar, Kerstin ;
Catrina, Sergiu-Bogdan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (49) :19426-19431
[7]   Cellular and molecular basis of wound healing in diabetes [J].
Brem, Harold ;
Tomic-Canic, Marjana .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (05) :1219-1222
[8]   Mouse Models of Diabetic Nephropathy [J].
Brosius, Frank C., III ;
Alpers, Charles E. ;
Bottinger, Erwin P. ;
Breyer, Matthew D. ;
Coffman, Thomas M. ;
Gurley, Susan B. ;
Harris, Raymond C. ;
Kakoki, Masao ;
Kretzler, Matthias ;
Leiter, Edward H. ;
Levi, Moshe ;
McIndoe, Richard A. ;
Sharma, Kumar ;
Smithies, Oliver ;
Susztak, Katalin ;
Takahashi, Nobuyuki ;
Takahashi, Takamune .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2009, 20 (12) :2503-2512
[9]   The basic science of wound healing [J].
Broughton, George, II ;
Janis, Jeffrey E. ;
Attinger, Christopher E. .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2006, 117 (07) :12S-34S
[10]   Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process [J].
Casper, CL ;
Stephens, JS ;
Tassi, NG ;
Chase, DB ;
Rabolt, JF .
MACROMOLECULES, 2004, 37 (02) :573-578