Feasibility of deep learning k-space-to-image reconstruction for diffusion weighted imaging in patients with breast cancers: Focus on image quality and reduced scan time

被引:22
作者
Lee, Eun Ji [1 ]
Chang, Yun-Woo [1 ]
Sung, Jae Kon [2 ]
Thomas, Benkert [3 ]
机构
[1] Soonchunhyang Univ, Seoul Hosp, Dept Radiol, 59 Daesakwan Ro, Seoul 04401, South Korea
[2] Siemens Healthineers Ltd, Seoul, South Korea
[3] Siemens Healthcare GmbH, MR Applicat Predev, Erlangen, Germany
关键词
Diffusion-weighted imaging; Echo planar imaging; Breast Neoplasms; Signal-to-noise ratio; Image Quality Enhancement; Deep Learning; MRI; WOMEN; MAMMOGRAPHY; DWI;
D O I
10.1016/j.ejrad.2022.110608
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: This study aimed to evaluate the feasibility of accelerated DLR (deep learning reconstruction) single-shot echo planar imaging (ss-EPI) for diffusion-weighted image (DWI) in patients with breast cancers in comparison to conventional ss-EPI.Methods: Between August 2021 and February 2022, eighty-seven patients with pathologically proven breast cancer underwent DCE breast MRI including ss-EPI and DLR ss-EPI DWI sequences (TA, 3:36 min and 1:54 min, respectively) at 3 Tesla. In a randomized and blinded manner, two radiologists independently performed qual-itative analyses for overall image quality using a 5-point scale of the following components: homogeneous fat suppression, image blurring, artifact, and lesion conspicuity. Quantitative analyses were performed by mea-surement of ADC values, SNR, CNR, and lesion contrast.Results: DLR ss-EPI showed better image quality scores, CNR, and lesion contrast than ss-EPI (all P < 0.05) while reducing scan time by 47.2 %. DLR ss-EPI showed no significant difference in SNR and tumor ADC values compared to -ss-EPI (P = 0.307 and P = 0.123, respectively).Conclusions: DLR ss-EPI showed better results in the qualitative and quantitative analysis than conventional ss-EPI despite reducing scan time by 47.2%.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Clinical feasibility of accelerated diffusion weighted imaging of the abdomen with deep learning reconstruction: Comparison with conventional diffusion weighted imaging [J].
Bae, Sung Hwan ;
Hwang, Jiyoung ;
Hong, Seong Sook ;
Lee, Eun Ji ;
Jeong, Jewon ;
Benkert, Thomas ;
Sung, JaeKon ;
Arberet, Simon .
EUROPEAN JOURNAL OF RADIOLOGY, 2022, 154
[2]   Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group [J].
Baltzer, Pascal ;
Mann, Ritse M. ;
Iima, Mami ;
Sigmund, Eric E. ;
Clauser, Paola ;
Gilbert, Fiona J. ;
Martincich, Laura ;
Partridge, Savannah C. ;
Patterson, Andrew ;
Pinker, Katja ;
Thibault, Fabienne ;
Camps-Herrero, Julia ;
Le Bihan, Denis .
EUROPEAN RADIOLOGY, 2020, 30 (03) :1436-1450
[3]   Potential of Noncontrast Magnetic Resonance Imaging With Diffusion-Weighted Imaging in Characterization of Breast Lesions Intraindividual Comparison With Dynamic Contrast-Enhanced Magnetic Resonance Imaging [J].
Baltzer, Pascal A. T. ;
Bickel, Hubert ;
Spick, Claudio ;
Wengert, Georg ;
Woitek, Ramona ;
Kapetas, Panagiotis ;
Clauser, Paola ;
Helbich, Thomas H. ;
Pinker, Katja .
INVESTIGATIVE RADIOLOGY, 2018, 53 (04) :229-235
[4]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[5]   Fast and Noninvasive Characterization of Suspicious Lesions Detected at Breast Cancer X-Ray Screening: Capability of Diffusion-weighted MR Imaging with MIPs [J].
Bickelhaupt, Sebastian ;
Laun, Frederik B. ;
Tesdorff, Jana ;
Lederer, Wolfgang ;
Daniel, Heidi ;
Stieber, Anne ;
Delorme, Stefan ;
Schlemmer, Heinz-Peter .
RADIOLOGY, 2016, 278 (03) :689-697
[6]   Simultaneous multi-slice readout-segmented echo planar imaging for accelerated diffusion-weighted imaging of the breast [J].
Filli, Lukas ;
Ghafoor, Soleen ;
Kenkel, David ;
Liu, Wei ;
Weiland, Elisabeth ;
Andreisek, Gustav ;
Frauenfelder, Thomas ;
Runge, Val M. ;
Boss, Andreas .
EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (01) :274-278
[7]   Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present? [J].
Gassenmaier, Sebastian ;
Kuestner, Thomas ;
Nickel, Dominik ;
Herrmann, Judith ;
Hoffmann, Ruediger ;
Almansour, Haidara ;
Afat, Saif ;
Nikolaou, Konstantin ;
Othman, Ahmed E. .
DIAGNOSTICS, 2021, 11 (12)
[8]   Accelerated T2-Weighted TSE Imaging of the Prostate Using Deep Learning Image Reconstruction: A Prospective Comparison with Standard T2-Weighted TSE Imaging [J].
Gassenmaier, Sebastian ;
Afat, Saif ;
Nickel, Marcel Dominik ;
Mostapha, Mahmoud ;
Herrmann, Judith ;
Almansour, Haidara ;
Nikolaou, Konstantin ;
Othman, Ahmed E. .
CANCERS, 2021, 13 (14)
[9]   Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality [J].
Gassenmaier, Sebastian ;
Afat, Saif ;
Nickel, Dominik ;
Mostapha, Mahmoud ;
Herrmann, Judith ;
Othman, Ahmed E. .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 137
[10]   Detection of Contralateral Breast Cancer Using Diffusion-Weighted Magnetic Resonance Imaging in Women with Newly Diagnosed Breast Cancer: Comparison with Combined Mammography and Whole-Breast Ultrasound [J].
Ha, Su Min ;
Chang, Jung Min ;
Lee, Su Hyun ;
Kim, Eun Sil ;
Kim, Soo-Yeon ;
Kim, Yeon Soo ;
Cho, Nariya ;
Moon, Woo Kyung .
KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (06) :867-879