CLIP-related methodologies and their application to retrovirology

被引:13
作者
Bieniasz, Paul D. [1 ,2 ]
Kutluay, Sebla B. [3 ]
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10065 USA
[2] Rockefeller Univ, Lab Retrovirol, New York, NY 10065 USA
[3] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
关键词
RNA-BINDING PROTEIN; TRANSCRIPTOME-WIDE IDENTIFICATION; SINGLE-NUCLEOTIDE RESOLUTION; HIV-1 REVERSE TRANSCRIPTION; VIRUS TYPE-1 INTEGRASE; AMINO-TERMINAL REGION; GAG MEMBRANE-BINDING; MESSENGER-RNA; HITS-CLIP; IN-VIVO;
D O I
10.1186/s12977-018-0417-2
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
引用
收藏
页数:14
相关论文
共 173 条
[1]   APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein [J].
Alce, TM ;
Popik, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34083-34086
[2]   Analysis of Human Immunodeficiency Virus Type 1 Matrix Binding to Membranes and Nucleic Acids [J].
Alfadhli, Ayna ;
Still, Amelia ;
Barklis, Eric .
JOURNAL OF VIROLOGY, 2009, 83 (23) :12196-12203
[3]   ISOLATION OF HIGH-AFFINITY RNA LIGANDS TO HIV-1 INTEGRASE FROM A RANDOM POOL [J].
ALLEN, P ;
WORLAND, S ;
GOLD, L .
VIROLOGY, 1995, 209 (02) :327-336
[4]   Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data [J].
Althammer, Sonja ;
Gonzalez-Vallinas, Juan ;
Ballare, Cecilia ;
Beato, Miguel ;
Eyras, Eduardo .
BIOINFORMATICS, 2011, 27 (24) :3333-3340
[5]  
[Anonymous], BIOMED RES INT
[6]   Promiscuous RNA Binding Ensures Effective Encapsidation of APOBEC3 Proteins by HIV-1 [J].
Apolonia, Luis ;
Schulz, Reiner ;
Curk, Tomaz ;
Rocha, Paula ;
Swanson, Chad M. ;
Schaller, Torsten ;
Ule, Jernej ;
Malim, Michael H. .
PLOS PATHOGENS, 2015, 11 (01) :1-22
[7]   Sequence-specific binding of single-stranded RNA: is there a code for recognition? [J].
Auweter, Sigrid D. ;
Oberstrass, Florian C. ;
Allain, Frederic H. -T. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (17) :4943-4959
[8]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[9]   Non-Catalytic Site HIV-1 Integrase Inhibitors Disrupt Core Maturation and Induce a Reverse Transcription Block in Target Cells [J].
Balakrishnan, Mini ;
Yant, Stephen R. ;
Luong Tsai ;
O'Sullivan, Christopher ;
Bam, Rujuta A. ;
Tsai, Angela ;
Niedziela-Majka, Anita ;
Stray, Kirsten M. ;
Sakowicz, Roman ;
Cihlar, Tomas .
PLOS ONE, 2013, 8 (09)
[10]   Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly [J].
Becker, Jordan T. ;
Sherer, Nathan M. .
JOURNAL OF VIROLOGY, 2017, 91 (06)