Network-based technologies for early drug discovery

被引:73
作者
Fotis, Chris [1 ]
Antoranz, Asier [1 ,2 ]
Hatziavramidis, Dimitris [1 ]
Sakellaropoulos, Theodore [1 ]
Alexopoulos, Leonidas G. [1 ,2 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
[2] Protavio Ltd, Cambridge, England
关键词
PATHWAY ANALYSIS; TARGET IDENTIFICATION; BIOLOGICAL NETWORKS; INTEGRATIVE BIOLOGY; PREDICTION; EVOLUTION; SYSTEMS; GENOME;
D O I
10.1016/j.drudis.2017.12.001
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Although the traditional drug discovery approach has led to the development of many successful drugs, the attrition rates remain high. Recent advances in systems-oriented approaches (systems-biology and/or pharmacology) and 'omics technologies has led to a plethora of new computational tools that promise to enable a more-informed and successful implementation of the reductionist, one drug for one target for one disease, approach. These tools, based on biomolecular pathways and interaction networks, offer a systematic approach to unravel the mechanism(s) of a disease and link them to the chemical space and network footprint of a drug. Drug discovery can draw upon this holistic approach to identify the most promising targets and compounds during the early phases of development.
引用
收藏
页码:626 / 635
页数:10
相关论文
共 51 条
[1]   Mechanism-based biomarker discovery [J].
Antoranz, Asier ;
Sakellaropoulos, Theodore ;
Saez-Rodriguez, Julio ;
Alexopoulos, Leonidas G. .
DRUG DISCOVERY TODAY, 2017, 22 (08) :1209-1215
[2]   Illuminating drug discovery with biological pathways [J].
Apic, G ;
Ignjatovic, T ;
Boyer, S ;
Russell, RB .
FEBS LETTERS, 2005, 579 (08) :1872-1877
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[5]  
Barrett S. J., 2013, P 14 INT C SYST BIOL
[6]   Automatic Filtering and Substantiation of Drug Safety Signals [J].
Bauer-Mehren, Anna ;
van Mullingen, Erik M. ;
Avillach, Paul ;
del Carmen Carrascosa, Maria ;
Garcia-Serna, Ricard ;
Pinero, Janet ;
Singh, Bharat ;
Lopes, Pedro ;
Oliveira, Jose L. ;
Diallo, Gayo ;
Helgee, Ernst Ahlberg ;
Boyer, Scott ;
Mestres, Jordi ;
Sanz, Ferran ;
Kors, Jan A. ;
Furlong, Laura I. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (04)
[7]   Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data [J].
Catlett, Natalie L. ;
Bargnesi, Anthony J. ;
Ungerer, Stephen ;
Seagaran, Toby ;
Ladd, William ;
Elliston, Keith O. ;
Pratt, Dexter .
BMC BIOINFORMATICS, 2013, 14
[8]   Causal reasoning on biological networks: interpreting transcriptional changes [J].
Chindelevitch, Leonid ;
Ziemek, Daniel ;
Enayetallah, Ahmed ;
Randhawa, Ranjit ;
Sidders, Ben ;
Brockel, Christoph ;
Huang, Enoch S. .
BIOINFORMATICS, 2012, 28 (08) :1114-1121
[9]   The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease [J].
Cisek, Katryna ;
Krochmal, Magdalena ;
Klein, Julie ;
Mischak, Harald .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2016, 31 (12) :2003-2011
[10]   Pharos: Collating protein information to shed light on the druggable genome [J].
Dac-Trung Nguyen ;
Mathias, Stephen ;
Bologa, Cristian ;
Brunak, Soren ;
Fernandez, Nicolas ;
Gaulton, Anna ;
Hersey, Anne ;
Holmes, Jayme ;
Jensen, Lars Juhl ;
Karlsson, Anneli ;
Liu, Guixia ;
Ma'ayan, Avi ;
Mandava, Geetha ;
Mani, Subramani ;
Mehta, Saurabh ;
Overington, John ;
Patel, Juhee ;
Rouillard, Andrew D. ;
Schurer, Stephan ;
Sheils, Timothy ;
Simeonov, Anton ;
Sklar, Larry A. ;
Southall, Noel ;
Ursu, Oleg ;
Vidovic, Dusica ;
Waller, Anna ;
Yang, Jeremy ;
Jadhav, Ajit ;
Oprea, Tudor I. ;
Guha, Rajarshi .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D995-D1002