Nanophotonic Control of the Forster Resonance Energy Transfer Efficiency

被引:149
作者
Blum, Christian [1 ]
Zijlstra, Niels [1 ]
Lagendijk, Ad [2 ,3 ]
Wubs, Martijn [4 ]
Mosk, Allard P. [2 ]
Subramaniam, Vinod [5 ]
Vos, Willem L. [2 ]
机构
[1] Univ Twente, Nanobiophys NBP, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Complex Photon Syst COPS, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[3] FOM Inst AMOLF, NL-1098 XG Amsterdam, Netherlands
[4] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[5] Univ Twente, Nanobiophys NBP, MIRA Inst Biomed Engn & Tech Med, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
BAND-GAP; FLUORESCENCE; EMISSION; LIGHT; FRET;
D O I
10.1103/PhysRevLett.109.203601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Forster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply a change in the characteristic Forster distance, in contrast to common lore that this distance is fixed for a given FRET pair.
引用
收藏
页数:5
相关论文
共 36 条
[11]  
Drexhage K., 1970, J. Lumin., V1-2, P693
[12]   Intermolecular energy transfer in the presence of dispersing and absorbing media -: art. no. 043813 [J].
Dung, HT ;
Knöll, L ;
Welsch, DG .
PHYSICAL REVIEW A, 2002, 65 (04) :438131-4381313
[13]   *ZWISCHENMOLEKULARE ENERGIEWANDERUNG UND FLUORESZENZ [J].
FORSTER, T .
ANNALEN DER PHYSIK, 1948, 2 (1-2) :55-75
[14]   Energy transfer in single-molecule photonic wires [J].
García-Parajó, MF ;
Hernando, J ;
Mosteiro, GS ;
Hoogenboom, JP ;
van Dijk, EMHP ;
van Hulst, NF .
CHEMPHYSCHEM, 2005, 6 (05) :819-827
[15]  
HAROCHE S, 1992, LES HOUCH S, V53, P767
[16]   QUANTUM OPTICS OF LOCALIZED LIGHT IN A PHOTONIC BAND-GAP [J].
JOHN, S ;
WANG, J .
PHYSICAL REVIEW B, 1991, 43 (16) :12772-12789
[17]   Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering [J].
Kolaric, Branko ;
Baert, Kasper ;
Van der Auweraer, Mark ;
Vallee, Renaud A. L. ;
Clays, Koen .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5547-5552
[18]  
Lakowicz J.R., 2006, Principles of Fluorescence Spectroscopy, V3rd, DOI DOI 10.1007/978-0-387-46312-4
[19]   Inhibited Spontaneous Emission of Quantum Dots Observed in a 3D Photonic Band Gap [J].
Leistikow, M. D. ;
Mosk, A. P. ;
Yeganegi, E. ;
Huisman, S. R. ;
Lagendijk, A. ;
Vos, W. L. .
PHYSICAL REVIEW LETTERS, 2011, 107 (19)
[20]   Optical schemes for quantum computation in quantum dot molecules [J].
Lovett, BW ;
Reina, JH ;
Nazir, A ;
Briggs, GAD .
PHYSICAL REVIEW B, 2003, 68 (20)