Nanophotonic Control of the Forster Resonance Energy Transfer Efficiency

被引:149
作者
Blum, Christian [1 ]
Zijlstra, Niels [1 ]
Lagendijk, Ad [2 ,3 ]
Wubs, Martijn [4 ]
Mosk, Allard P. [2 ]
Subramaniam, Vinod [5 ]
Vos, Willem L. [2 ]
机构
[1] Univ Twente, Nanobiophys NBP, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Complex Photon Syst COPS, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[3] FOM Inst AMOLF, NL-1098 XG Amsterdam, Netherlands
[4] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[5] Univ Twente, Nanobiophys NBP, MIRA Inst Biomed Engn & Tech Med, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
BAND-GAP; FLUORESCENCE; EMISSION; LIGHT; FRET;
D O I
10.1103/PhysRevLett.109.203601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Forster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply a change in the characteristic Forster distance, in contrast to common lore that this distance is fixed for a given FRET pair.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Forster energy transfer in an optical microcavity [J].
Andrew, P ;
Barnes, WL .
SCIENCE, 2000, 290 (5492) :785-788
[2]   High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
NATURE, 2000, 403 (6771) :750-753
[3]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[4]  
Barnes WL, 1998, J MOD OPTIC, V45, P661, DOI 10.1080/09500349808230614
[5]   Built-in Quantum Dot Antennas in Dye-Sensitized Solar Cells [J].
Buhbut, Sophia ;
Itzhakov, Stella ;
Tauber, Elad ;
Shalom, Menny ;
Hod, Idan ;
Geiger, Thomas ;
Garini, Yuval ;
Oron, Dan ;
Zaban, Arie .
ACS NANO, 2010, 4 (03) :1293-1298
[6]   Detection of heteromerization of more than two proteins by sequential BRET-FRET [J].
Carriba, Paulina ;
Navarro, Gemma ;
Ciruela, Francisco ;
Ferre, Sergi ;
Casado, Vicent ;
Agnati, Luigi ;
Cortes, Antoni ;
Mallol, Josefa ;
Fuxe, Kjell ;
Canela, Enric I. ;
Lluis, Carmen ;
Franco, Rafael .
NATURE METHODS, 2008, 5 (08) :727-733
[7]   Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates [J].
Cesa, Yanina ;
Blum, Christian ;
van den Broek, Johanna M. ;
Mosk, Allard P. ;
Vos, Willem L. ;
Subramaniam, Vinod .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (14) :2525-2531
[8]  
Chance R. R., 1978, ADV CHEM PHYS, V143, P1
[9]   Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices [J].
Chanyawadee, S. ;
Harley, R. T. ;
Henini, M. ;
Talapin, D. V. ;
Lagoudakis, P. G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (07)
[10]   Forster transfer and the local optical density of states in erbium-doped silica [J].
de Dood, MJA ;
Knoester, J ;
Tip, A ;
Polman, A .
PHYSICAL REVIEW B, 2005, 71 (11)