High-fidelity controlled-σZ gate for resonator-based superconducting quantum computers

被引:74
作者
Ghosh, Joydip [1 ]
Galiautdinov, Andrei [1 ,2 ]
Zhou, Zhongyuan [1 ]
Korotkov, Alexander N. [2 ]
Martinis, John M. [3 ]
Geller, Michael R. [1 ]
机构
[1] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 02期
关键词
STATES;
D O I
10.1103/PhysRevA.87.022309
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A possible building block for a scalable quantum computer has recently been demonstrated [Mariantoni et al., Science 334, 61 (2011)]. This architecture consists of superconducting qubits capacitively coupled both to individual memory resonators as well as a common bus. In this work we study a natural primitive entangling gate for this and related resonator-based architectures, which consists of a controlled-sigma(z) (CZ) operation between a qubit and the bus. The CZ gate is implemented with the aid of the noncomputational qubit |2 > state [Strauch et al., Phys. Rev. Lett. 91, 167005 (2003)]. Assuming phase or transmon qubits with 300 MHz anharmonicity, we show that by using only low frequency qubit-bias control it is possible to implement the qubit-bus CZ gate with 99.9% (99.99%) fidelity in about 17 ns (23 ns) with a realistic two-parameter pulse profile, plus two auxiliary z rotations. The fidelity measure we refer to here is a state-averaged intrinsic process fidelity, which does not include any effects of noise or decoherence. These results apply to a multiqubit device that includes strongly coupled memory resonators. We investigate the performance of the qubit-bus CZ gate as a function of qubit anharmonicity, identify the dominant intrinsic error mechanism and derive an associated fidelity estimator, quantify the pulse shape sensitivity and precision requirements, simulate qubit-qubit CZ gates that are mediated by the bus resonator, and also attempt a global optimization of system parameters including resonator frequencies and couplings. Our results are relevant for a wide range of superconducting hardware designs that incorporate resonators and suggest that it should be possible to demonstrate a 99.9% CZ gate with existing transmon qubits, which would constitute an important step towards the development of an error-corrected superconducting quantum computer. DOI: 10.1103/PhysRevA.87.022309
引用
收藏
页数:19
相关论文
共 61 条
  • [11] Superconducting quantum bits
    Clarke, John
    Wilhelm, Frank K.
    [J]. NATURE, 2008, 453 (7198) : 1031 - 1042
  • [12] Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates
    de Groot, P. C.
    Ashhab, S.
    Lupascu, A.
    DiCarlo, L.
    Nori, Franco
    Harmans, C. J. P. M.
    Mooij, J. E.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [13] Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits
    de Groot, P. C.
    Lisenfeld, J.
    Schouten, R. N.
    Ashhab, S.
    Lupascu, A.
    Harmans, C. J. P. M.
    Mooij, J. E.
    [J]. NATURE PHYSICS, 2010, 6 (10) : 763 - 766
  • [14] Preparation and measurement of three-qubit entanglement in a superconducting circuit
    DiCarlo, L.
    Reed, M. D.
    Sun, L.
    Johnson, B. R.
    Chow, J. M.
    Gambetta, J. M.
    Frunzio, L.
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. NATURE, 2010, 467 (7315) : 574 - 578
  • [15] Demonstration of two-qubit algorithms with a superconducting quantum processor
    DiCarlo, L.
    Chow, J. M.
    Gambetta, J. M.
    Bishop, Lev S.
    Johnson, B. R.
    Schuster, D. I.
    Majer, J.
    Blais, A.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. NATURE, 2009, 460 (7252) : 240 - 244
  • [16] DiVincenzo D. P., ARXIVQUANTPH0002077
  • [17] Fault-tolerant architectures for superconducting qubits
    DiVincenzo, David P.
    [J]. PHYSICA SCRIPTA, 2009, T137
  • [18] Egger D. A., UNPUB
  • [19] High-threshold universal quantum computation on the surface code
    Fowler, Austin G.
    Stephens, Ashley M.
    Groszkowski, Peter
    [J]. PHYSICAL REVIEW A, 2009, 80 (05):
  • [20] Galiautdinov A., ARXIV11034641