High-fidelity controlled-σZ gate for resonator-based superconducting quantum computers

被引:77
作者
Ghosh, Joydip [1 ]
Galiautdinov, Andrei [1 ,2 ]
Zhou, Zhongyuan [1 ]
Korotkov, Alexander N. [2 ]
Martinis, John M. [3 ]
Geller, Michael R. [1 ]
机构
[1] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 02期
关键词
STATES;
D O I
10.1103/PhysRevA.87.022309
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A possible building block for a scalable quantum computer has recently been demonstrated [Mariantoni et al., Science 334, 61 (2011)]. This architecture consists of superconducting qubits capacitively coupled both to individual memory resonators as well as a common bus. In this work we study a natural primitive entangling gate for this and related resonator-based architectures, which consists of a controlled-sigma(z) (CZ) operation between a qubit and the bus. The CZ gate is implemented with the aid of the noncomputational qubit |2 > state [Strauch et al., Phys. Rev. Lett. 91, 167005 (2003)]. Assuming phase or transmon qubits with 300 MHz anharmonicity, we show that by using only low frequency qubit-bias control it is possible to implement the qubit-bus CZ gate with 99.9% (99.99%) fidelity in about 17 ns (23 ns) with a realistic two-parameter pulse profile, plus two auxiliary z rotations. The fidelity measure we refer to here is a state-averaged intrinsic process fidelity, which does not include any effects of noise or decoherence. These results apply to a multiqubit device that includes strongly coupled memory resonators. We investigate the performance of the qubit-bus CZ gate as a function of qubit anharmonicity, identify the dominant intrinsic error mechanism and derive an associated fidelity estimator, quantify the pulse shape sensitivity and precision requirements, simulate qubit-qubit CZ gates that are mediated by the bus resonator, and also attempt a global optimization of system parameters including resonator frequencies and couplings. Our results are relevant for a wide range of superconducting hardware designs that incorporate resonators and suggest that it should be possible to demonstrate a 99.9% CZ gate with existing transmon qubits, which would constitute an important step towards the development of an error-corrected superconducting quantum computer. DOI: 10.1103/PhysRevA.87.022309
引用
收藏
页数:19
相关论文
共 61 条
[11]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[12]   Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates [J].
de Groot, P. C. ;
Ashhab, S. ;
Lupascu, A. ;
DiCarlo, L. ;
Nori, Franco ;
Harmans, C. J. P. M. ;
Mooij, J. E. .
NEW JOURNAL OF PHYSICS, 2012, 14
[13]   Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits [J].
de Groot, P. C. ;
Lisenfeld, J. ;
Schouten, R. N. ;
Ashhab, S. ;
Lupascu, A. ;
Harmans, C. J. P. M. ;
Mooij, J. E. .
NATURE PHYSICS, 2010, 6 (10) :763-766
[14]   Preparation and measurement of three-qubit entanglement in a superconducting circuit [J].
DiCarlo, L. ;
Reed, M. D. ;
Sun, L. ;
Johnson, B. R. ;
Chow, J. M. ;
Gambetta, J. M. ;
Frunzio, L. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE, 2010, 467 (7315) :574-578
[15]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[16]  
DiVincenzo D. P., ARXIVQUANTPH0002077
[17]   Fault-tolerant architectures for superconducting qubits [J].
DiVincenzo, David P. .
PHYSICA SCRIPTA, 2009, T137
[18]  
Egger D. A., UNPUB
[19]   High-threshold universal quantum computation on the surface code [J].
Fowler, Austin G. ;
Stephens, Ashley M. ;
Groszkowski, Peter .
PHYSICAL REVIEW A, 2009, 80 (05)
[20]  
Galiautdinov A., ARXIV11034641