A Hybrid Model for Bitcoin Prices Prediction using Hidden Markov Models and Optimized LSTM Networks

被引:0
|
作者
Abu Hashish, Iman [1 ]
Forni, Fabio [1 ]
Andreotti, Gianluca [1 ]
Facchinetti, Tullio [1 ]
Darjani, Shiva [2 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, Pavia, Italy
[2] Univ Zanjan, Dept Elect Engn, Zanjan, Iran
来源
2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA) | 2019年
关键词
Crypto-currency; Bitcoin; Prediction; Hidden Markov Models; Genetic Algorithms; Long Short Term Memory; Neural Networks;
D O I
10.1109/etfa.2019.8869094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the recent advances in the Blockchain technology, and due to its decentralized nature, it has been a much considered approach for solving issues in the Internet of Things (ToT) sector, in particular, for IoT payment platforms. As Machine-to-Machine (M2M) payments are fundamental in the IoT economy, the development of Blockchain-based payment platforms, using cryptocurrency, is continuously increasing as it enables a pure M2M, secure and private financial transactions. Unlike traditional assets, cryptocurrencies have a higher index of volatility, which makes it essential to understand the movement of their prices, as a first step to optimize Blockchain-based M2M payment transactions. In this paper, we propose a novel hybrid model that deals with this challenge from a descriptive, as well as predictive points of view. We use Hidden Markov Models to describe cryptocurrencies historical movements to predict future movements with Long Short Term Memory networks. To evaluate the proposed hybrid model, we have chosen 2-minute frequency Bitcoin data from Coinbase exchange market. Our proposed model proved its effectiveness compared to traditional time-series forecasting models, ARIMA, as well as a conventional LSTM.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 50 条
  • [1] A HYBRID MODEL INTEGRATING LSTM AND GARCH FOR BITCOIN PRICE PREDICTION
    Gao, Zidi
    He, Yiwen
    Kuruoglu, Ercan Engin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [2] PREDICTION OF CRYPTOCURRENCY PRICES WITH LSTM AND GRU MODELS
    Demirci, Esranur
    Karaatli, Meltem
    JOURNAL OF MEHMET AKIF ERSOY UNIVERSITY ECONOMICS AND ADMINISTRATIVE SCIENCES FACULTY, 2023, 10 (01): : 134 - 157
  • [3] A novel hybrid system with neural networks and hidden Markov models in fault diagnosis
    Miao, Qiang
    Huang, Hong-Zhong
    Fan, Xianfeng
    MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 513 - +
  • [4] Bitcoin Options Pricing Using LSTM-based Prediction Model and Blockchain Statistics
    Li, Lun
    Arab, Ali
    Liu, Jiqiang
    Liu, Jingxian
    Han, Zhu
    2019 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2019), 2019, : 67 - 74
  • [5] Hidden Markov Models for Forex Trends Prediction
    Lee, Yunli
    Ow, Leslie Tiong Ching
    Ling, David Ngo Chek
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [6] Hypotension States' Prediction by using the Hidden Markov Models
    Evin, Diego
    Hadad, Alejandro
    Martina, Mauro
    Drozdowicz, Bartolome
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2011, 20 (30): : 55 - 63
  • [7] BITCOIN PRICE PREDICTION USING LSTM, GRU AND HYBRID LSTM-GRU WITH BAYESIAN FOR THE NEXT DAYS
    Kervanci, I. Sibel
    Akay, M. Fathi
    Ozceylan, Eren
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (02) : 570 - 588
  • [8] Bitcoin Price Prediction using the Hybrid Convolutional Recurrent Model Architecture
    Ahmed, Omar M.
    Haji, Lailan M.
    Ahmed, Ayah M.
    Salih, Nashwan M.
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (05) : 11735 - 11738
  • [9] Process Fault Prognosis Using Hidden Markov Model-Bayesian Networks Hybrid Model
    Don, Mihiran Galagedarage
    Khan, Faisal
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (27) : 12041 - 12053
  • [10] HyBiLSTM: Multivariate Bitcoin Price Forecasting Using Hybrid Time-Series Models With Bidirectional LSTM
    Mardjo, Anny
    Choksuchat, Chidchanok
    IEEE ACCESS, 2024, 12 : 50792 - 50808