Magnetic properties of Sm0.1Ca0.9MnO3 nanoparticles

被引:14
作者
Markovich, V. [1 ]
Fita, I. [2 ,3 ]
Wisniewski, A. [2 ]
Puzniak, R. [2 ]
Mogilyansky, D. [4 ]
Kohn, A. [5 ,6 ]
Dolgin, B. [1 ]
Iwanowski, P. [2 ]
Gorodetsky, G. [1 ]
Jung, G. [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[3] Natl Acad Sci, Donetsk Inst Phys & Technol, UA-83114 Donetsk, Ukraine
[4] Ben Gurion Univ Negev, Inst Appl Res, IL-84105 Beer Sheva, Israel
[5] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
[6] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel
关键词
EXCHANGE BIAS; PHASE; BEHAVIOR; TEMPERATURE; DEPENDENCE; DYNAMICS; FINS; LA; LN;
D O I
10.1063/1.4754310
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic properties of compacted Sm0.1Ca0.9MnO3 nanoparticles with average particle size of 25 and 60 nm have been investigated. It was found that the relative volume of the ferromagnetic phase decreases with decreasing particle size. Magnetization curves measured in field cooled and zero field cooled mode separate near the transition temperature T-C and remain different even in magnetic field of 15 kOe. AC-susceptibility is strongly frequency dependent below T-C, although the temperature of the maximum depends on frequency only slightly. Magnetization hysteresis loops exhibit horizontal and vertical shifts, relatively small in 60 nm and much larger in 25 nm particles, due to size-dependent exchange bias effect. The exchange bias field and the coercive field depend in a non-monotonic way on cooling magnetic field, while the asymmetry of remanence magnetization and magnetic coercivity increase monotonously with the increase of cooling field. Applied pressure enhances Curie temperature T-C of nanoparticles with a pressure coefficient dT(C)/dP approximate to 0.6 K kbar(-1), close to that of the bulk, suggesting that magnetic state of the core is similar to the bulk state. The thermoremanance and isothermoremanance curves provide fingerprints of irreversible magnetization originating from the presence of glassy component. We have ascribed the magnetic behavior of the nanoparticles to a core-shell scenario with phase separated core containing ferromagnetic clusters embedded in an antiferromagnetic matrix and partially disordered antiferromagnetic or paramagnetic shell. The suppression of the ferromagnetic phase in the core with decreasing particle size may account for the enhancement of the exchange bias effect seen in smaller particles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754310]
引用
收藏
页数:13
相关论文
共 82 条
[21]   Relative-thickness dependence of exchange bias in bilayers and trilayers [J].
Hu, Yong ;
Wu, Guo-Zhen ;
Liu, Yan ;
Du, An .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (19) :3204-3208
[22]   Dynamic properties of cluster glass in La0.25Ca0.75MnO3 nanoparticles [J].
Huang, X. H. ;
Ding, J. F. ;
Jiang, Z. L. ;
Yin, Y. W. ;
Yu, Q. X. ;
Li, X. G. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (08)
[23]   Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles [J].
Huang, X. H. ;
Ding, J. F. ;
Zhang, G. Q. ;
Hou, Y. ;
Yao, Y. P. ;
Li, X. G. .
PHYSICAL REVIEW B, 2008, 78 (22)
[24]   Griffiths phase and critical behavior in single-crystal La0.7Ba0.3MnO3:: Phase diagram for La1-xBaxMnO3 (x≤0.33) [J].
Jiang, Wanjun ;
Zhou, XueZhi ;
Williams, Gwyn .
PHYSICAL REVIEW B, 2008, 77 (06)
[25]   Magnetic properties of La0.7Sr0.3MnO3 nanopowders [J].
Kalita, V. M. ;
Lozenko, A. F. ;
Ryabchenko, S. M. ;
Timopheeev, A. A. ;
Trotsenko, R. A. ;
Danilenko, I. A. ;
Konstantinova, T. E. .
LOW TEMPERATURE PHYSICS, 2008, 34 (06) :436-445
[26]   Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L=Y, Y0.5Sm0.5, and Y0.5La0.5) [J].
Karmakar, Shilpi ;
Taran, S. ;
Bose, Esa ;
Chaudhuri, B. K. .
PHYSICAL REVIEW B, 2008, 77 (14)
[27]   Structural study on the phase separation in Sm1-xCaxMnO3 (0.8≤x≤0.92) [J].
Kim, Bongju ;
Tong, P. ;
Kwon, Daeyoung ;
Wu, Youngsoo ;
Ahn, Jai Seok ;
Jeong, Il-Kyoung ;
Kim, Sung Baek ;
Cheong, S-W. ;
Kim, Bog G. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
[28]   Superparamagnetism and transport properties of ultrafine La2/3Ca1/3MnO3 powders [J].
Li, RW ;
Xiong, H ;
Sun, JR ;
Li, QA ;
Wang, ZH ;
Zhang, J ;
Shen, BG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (01) :141-148
[29]   Inhomogeneous magnetism in La-doped CaMnO3.: I.: Mesoscopic phase separation due to lattice-coupled ferromagnetic interactions -: art. no. 134439 [J].
Ling, CD ;
Granado, E ;
Neumeier, JJ ;
Lynn, JW ;
Argyriou, DN .
PHYSICAL REVIEW B, 2003, 68 (13)
[30]   Charge-order breaking and ferromagnetism in La0.4Ca0.6MnO3 nanoparticles [J].
Lu, C. L. ;
Dong, S. ;
Wang, K. F. ;
Gao, F. ;
Li, P. L. ;
Lv, L. Y. ;
Liu, J.-M. .
APPLIED PHYSICS LETTERS, 2007, 91 (03)