POSITIVE SOLUTIONS FOR ROBIN PROBLEMS WITH GENERAL POTENTIAL AND LOGISTIC REACTION

被引:7
作者
Hu, Shouchuan [1 ,2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Shandong Normal Univ, Coll Math, Jinan, Shandong, Peoples R China
[2] Missouri State Univ, Dept Math, Springfield, MO 65804 USA
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Indefinite and unbounded potential; semilinear equation; superdiffusive reaction; bifurcation-type theorem; positive solution; Robin problem; DEGENERATE ELLIPTIC EQUATION; NEUMANN PROBLEMS; MULTIPLE SOLUTIONS; DIRICHLET PROBLEMS; INDEFINITE; EXISTENCE; BIFURCATION; SIGN; DIFFUSION;
D O I
10.3934/cpaa.2016046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semilinear Robin problem driven by the negative Laplacian plus an indefinite and unbounded potential and a superdiffusive lotistic-type reaction. We prove bifurcation results describing the dependence of the set of positive solutions on the parameter of the problem. We also establish the existence of extreme positive solutions and determine their properties.
引用
收藏
页码:2489 / 2507
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 2008, MEM AM MATH SOC
[2]   A NONLINEAR EIGENVALUE PROBLEM FOR THE PERIODIC SCALAR p-LAPLACIAN [J].
Barletta, Giuseppina ;
Livera, Roberto ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) :1075-1086
[3]   Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type [J].
Cardinali, Tiziana ;
Papageorgiou, Nikolaos S. ;
Rubbioni, Paola .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) :1-21
[4]   EXISTENCE AND QUALITATIVE PROPERTIES OF SOLUTIONS FOR NONLINEAR DIRICHLET PROBLEMS [J].
Castro, Alfonso ;
Cossio, Jorge ;
Velez, Carlos .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (01) :123-140
[5]   UNILATERAL GLOBAL BIFURCATION FOR p-LAPLACIAN WITH NON-p-1-LINEARIZATION NONLINEARITY [J].
Dai, Guowei ;
Ma, Ruyun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) :99-116
[6]   Existence and multiplicity results for a degenerate elliptic equation [J].
Dong, Wei ;
Chen, Jian Tao .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) :665-670
[7]   EXISTENCE OF FIVE NONZERO SOLUTIONS WITH EXACT SIGN FOR A p-LAPLACIAN EQUATION [J].
Filippakis, Michael ;
Kristaly, Alexandru ;
Papageorgiou, Nikolas S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :405-440
[8]   POSITIVE SOLUTIONS AND BIFURCATION PHENOMENA FOR NONLINEAR ELLIPTIC EQUATIONS OF LOGISTIC TYPE: THE SUPERDIFFUSIVE CASE [J].
Filippakis, Michael E. ;
O'Regan, Donal ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) :1507-1527
[9]  
Gasinski L., 2006, NONLINEAR ANAL
[10]   DIRICHLET (p, q)-EQUATIONS AT RESONANCE [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :2037-2060