GNDD: A Graph Neural Network-Based Method for Drug-Disease Association Prediction

被引:0
|
作者
Wang, Bei [1 ,5 ]
Lyu, Xiaoqing [1 ,5 ]
Qu, Jingwei [1 ,5 ]
Sun, Haowen [2 ,6 ]
Pan, Zehua [3 ,7 ]
Tang, Zhi [1 ,4 ,5 ,8 ]
机构
[1] WICT, Beijing, Peoples R China
[2] BUAA, Beijing, Peoples R China
[3] BJTU, Beijing, Peoples R China
[4] State Key Lab Digital Publishing Technol, Beijing, Peoples R China
[5] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
[6] Beihang Univ, Sch Software, Beijing, Peoples R China
[7] Beijing Jiaotong Univ, Coll Elect & Informat Engn, Beijing, Peoples R China
[8] Peking Univ Founder Grp Co LTD, State Key Lab Digital Publishing Technol, Beijing, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2019年
基金
中国国家自然科学基金;
关键词
drug-disease associations; graph neural network; embedding propagation;
D O I
10.1109/bibm47256.2019.8983257
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Potential drug-disease association prediction is important to facilitate drug discovery. However, most of existing drug-disease association prediction approaches rely on assembling multiple drug (disease)-related biological information, which is usually not comprehensively available, and they always fail to explore the latent information in drug-disease network. To tackle these challenges, we propose a graph neural network-based method for drug-disease association prediction, dubbed GNDD, with capturing the complex information between drugs and diseases dispense with any side information. Specifically, GNDD introduces the idea of collaborative filtering in recommendation system to avoid the dependency on multi-data. Furthermore, an embedding propagation strategy is exploited to model the high-order relationships in drug-disease network. We conduct experiments on the Comparative Toxicogenomics Database, demonstrating the effectiveness of our method in drug-disease association prediction.
引用
收藏
页码:1253 / 1255
页数:3
相关论文
共 50 条
  • [31] Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction
    He, Shihui
    Yun, Lijun
    Yi, Haicheng
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [32] Graph Neural Network-based surrogate model for granular flows
    Choi, Yongjin
    Kumar, Krishna
    COMPUTERS AND GEOTECHNICS, 2024, 166
  • [33] GraphConfRec: A Graph Neural Network-Based Conference Recommender System
    Iana, Andreea
    Paulheim, Heiko
    2021 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2021), 2021, : 90 - 99
  • [34] A Deep Graph Neural Network-Based Mechanism for Social Recommendations
    Guo, Zhiwei
    Wang, Heng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2776 - 2783
  • [35] Graph Neural Network-Based Bitcoin Transaction Tracking Model
    Li, Zhiyuan
    He, Enhan
    IEEE ACCESS, 2023, 11 : 62109 - 62120
  • [36] Water Quality Prediction Method Based on Reinforcement Learning Graph Neural Network
    Yan, Mingming
    Wang, Zhe
    IEEE ACCESS, 2024, 12 : 184421 - 184430
  • [37] Application of an Improved Graph Neural Network for Drug Property Prediction
    Ma, Xiaopu
    Wang, Zhan
    Li, He
    IEEE ACCESS, 2024, 12 : 46812 - 46820
  • [38] Drug-Target Interaction Prediction Based on Graph Neural Network and Recommendation System
    Lei, Peng
    Yuan, Changan
    Wu, Hongjie
    Zhao, Xingming
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 66 - 78
  • [39] Co-contrastive Self-supervised Learning for Drug-Disease Association Prediction
    Gao, Zihao
    Ma, Huifang
    Zhang, Xiaohui
    Wu, Zheyu
    Li, Zhixin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 327 - 338
  • [40] Attention-based cross domain graph neural network for prediction of drug-drug interactions
    Yu, Hui
    Li, KangKang
    Dong, WenMin
    Song, ShuangHong
    Gao, Chen
    Shi, JianYu
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)