Recombinational DNA repair of damaged replication forks in Escherichia coli:: Questions

被引:189
作者
Cox, MM [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
关键词
replication; recombination; RecA protein; PriA protein; repair;
D O I
10.1146/annurev.genet.35.102401.090016
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
It has recently become clear that the recombinational repair of stalled replication forks is the primary function of homologous recombination systems in bacteria. In spite of the rapid progress in many related lines of inquiry that have converged to support this view, much remains to be done. This review focuses on several key gaps in understanding. Insufficient data currently exists on: (a) the levels and types of DNA damage present as a function of growth conditions, (b) which types of damage and other barriers actually halt replication, (c) the structures of the stalled/collapsed replication forks, (d) the number of recombinational repair paths available and their mechanistic details, (e) the enzymology of some of the key reactions required for repair, (f) the role of certain recombination proteins that have not yet been studied, and (g) the molecular origin of certain in vivo observations associated with recombinational DNA repair during the SOS response. The current status of each of these topics is reviewed.
引用
收藏
页码:53 / 82
页数:30
相关论文
共 181 条
[1]   Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12 [J].
AlDeib, AA ;
Mahdi, AA ;
Lloyd, RG .
JOURNAL OF BACTERIOLOGY, 1996, 178 (23) :6782-6789
[2]   The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner [J].
Anderson, DG ;
Kowalczykowski, SC .
CELL, 1997, 90 (01) :77-86
[3]   The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme [J].
Anderson, DG ;
Kowalczykowski, SC .
GENES & DEVELOPMENT, 1997, 11 (05) :571-581
[4]   Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories [J].
Aravind, L ;
Makarova, KS ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 2000, 28 (18) :3417-3432
[5]   Quantitative analysis of the kinetics of end-dependent disassembly of RecA filaments from ssDNA [J].
Arenson, TA ;
Tsodikov, OV ;
Cox, MM .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (03) :391-401
[6]   DNA-REPLICATION TRIGGERED BY DOUBLE-STRANDED BREAKS IN ESCHERICHIA-COLI - DEPENDENCE ON HOMOLOGOUS RECOMBINATION FUNCTIONS [J].
ASAI, T ;
BATES, DB ;
KOGOMA, T .
CELL, 1994, 78 (06) :1051-1061
[7]   FREQUENCY AND SPECTRUM OF MUTATIONS PRODUCED BY A SINGLE CIS-SYN THYMINE-THYMINE CYCLOBUTANE DIMER IN A SINGLE-STRANDED VECTOR [J].
BANERJEE, SK ;
CHRISTENSEN, RB ;
LAWRENCE, CW ;
LECLERC, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (21) :8141-8145
[8]   Circles: The replication-recombination-chromosome segregation connection [J].
Barre, FX ;
Soballe, B ;
Michel, B ;
Aroyo, M ;
Robertson, M ;
Sherratt, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8189-8195
[9]   EFFECT OF SINGLE DNA LESIONS ON IN IN-VITRO REPLICATION WITH DNA-POLYMERASE-III HOLOENZYME - COMPARISON WITH OTHER POLYMERASES [J].
BELGUISEVALLADIER, P ;
MAKI, H ;
SEKIGUCHI, M ;
FUCHS, RPP .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 236 (01) :151-164
[10]   RUVC PROTEIN RESOLVES HOLLIDAY JUNCTIONS VIA CLEAVAGE OF THE CONTINUOUS (NONCROSSOVER) STRANDS [J].
BENNETT, RJ ;
WEST, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) :5635-5639