An evidence-based score to detect prevalent peripheral artery disease (PAD)

被引:34
作者
Duval, Sue [1 ]
Massaro, Joseph M. [2 ,3 ]
Jaff, Michael R. [4 ]
Boden, William E. [5 ,6 ]
Alberts, Mark J. [7 ]
Califf, Robert M. [8 ,9 ]
Eagle, Kim A. [10 ]
D'Agostino, Ralph B., Sr. [2 ,3 ]
Pedley, Alison [2 ,3 ]
Fonarow, Gregg C. [11 ]
Murabito, Joanne M. [12 ]
Steg, P. Gabriel [13 ]
Bhatt, Deepak L. [14 ,15 ]
Hirsch, Alan T. [16 ]
机构
[1] Univ Minnesota, Sch Med, Lillehei Clin Res Unit, Div Cardiovasc, Minneapolis, MN 55455 USA
[2] Boston Univ, Sch Publ Hlth, Boston, MA USA
[3] Harvard Clin Res Inst, Boston, MA USA
[4] Massachusetts Gen Hosp, Boston, MA 02114 USA
[5] Samuel S Stratton VA Med Ctr, Albany, NY USA
[6] Albany Med Ctr, Dept Med, Albany, NY USA
[7] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[8] Duke Univ, Med Ctr, Durham, NC USA
[9] Duke Translat Med Inst, Durham, NC USA
[10] Univ Michigan, Ctr Cardiovasc, Ann Arbor, MI 48109 USA
[11] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
[12] Boston Univ, Sch Med, Boston, MA 02118 USA
[13] Univ Paris 07, INSERM, U698, Paris, France
[14] Brigham & Womens Hosp, VA Boston Healthcare Syst, Boston, MA 02115 USA
[15] Harvard Univ, Sch Med, Boston, MA USA
[16] Univ Minnesota, Sch Publ Hlth, Div Cardiovasc, Minneapolis, MN 55455 USA
关键词
ankle-brachial index; peripheral artery disease; prevalence; registry; risk score; RISK SCORE; CARDIOVASCULAR-DISEASE; PATHOPHYSIOLOGY; INDIVIDUALS; PROBABILITY; VALIDATION; PREDICTION; MANAGEMENT; DERIVATION; PROFILE;
D O I
10.1177/1358863X12445102
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Detection of peripheral artery disease (PAD) typically entails collection of medical history, physical examination, and noninvasive imaging, but whether a risk factor-based model has clinical utility in population screening is unclear. Our objective was to derive and validate a new score for estimating PAD probability in individuals or populations. PAD presence was determined by a history of previous or current intermittent claudication associated with an ankle-brachial index (ABI) of < 0.9 or previous lower extremity arterial intervention. Multivariable stepwise logistic regression identified cross-sectional correlates of PAD from demographic, clinical, and laboratory variables. Analyses were derived from 18,049 US REACH (REduction of Atherothrombosis for Continued Health) Registry outpatients with a complete baseline risk factor profile (enrolled from December 2003 to June 2004). Model performance was assessed internally using 10-fold cross validation, and effect estimates were used to generate the score. The model was externally validated using the Framingham Offspring Study. Age, sex, smoking, diabetes mellitus, body mass index, hypertension stage, and history of heart failure, coronary artery disease, and cerebrovascular disease were predictive of PAD prevalence. The model had reasonable discrimination on derivation and internal validation (c-statistic = 0.61 and 0.60, respectively) and external validation (c-statistic = 0.63 [ABI < 0.9] or 0.64 [clinical PAD]). The model-estimated PAD prevalence varied more than threefold from lowest to highest decile (range, 4.5-16.7) and corresponded closely with actual PAD prevalence in each population. In conclusion, this new tool uses clinical variables to estimate PAD prevalence. While predictive power may be limited, it may improve PAD detection in vulnerable, at-risk populations.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 23 条
[1]   AN UPDATED CORONARY RISK PROFILE - A STATEMENT FOR HEALTH-PROFESSIONALS [J].
ANDERSON, KM ;
WILSON, PWF ;
ODELL, PM ;
KANNEL, WB .
CIRCULATION, 1991, 83 (01) :356-362
[2]   Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Munster (PROCAM) study [J].
Assmann, G ;
Cullen, P ;
Schulte, H .
CIRCULATION, 2002, 105 (03) :310-315
[3]   Diabetes and atherosclerosis - Epidemiology, pathophysiology, and management [J].
Beckman, JA ;
Creager, MA ;
Libby, P .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2002, 287 (19) :2570-2581
[4]   A clinical prediction model for the presence of peripheral arterial disease -: the benefit of screening individuals before initiation of measurement of the ankle-brachial index:: an observational study [J].
Bendermacher, Bianca L. W. ;
Teijink, Joep A. W. ;
Willigendael, Edith M. ;
Bartelink, Marie-Louise ;
Peters, Ron J. G. ;
de Bie, Rob A. ;
Buller, Harry R. ;
Boiten, Jelis ;
Langenberg, Machteld ;
Prins, Martin H. .
VASCULAR MEDICINE, 2007, 12 (01) :5-11
[5]   International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis [J].
Bhatt, DL ;
Steg, PG ;
Ohman, EM ;
Hirsch, AT ;
Ikeda, Y ;
Mas, JL ;
Goto, S ;
Liau, CS ;
Richard, AJ ;
Röther, J ;
Wilson, PWF ;
Andersen-Dalheim, H ;
Anderson, P ;
Anell, B ;
Arber, S ;
Armstrong, K ;
Arnot, D ;
Baldam, A ;
Barratt, I ;
Barresi, S ;
Beder, J ;
Benson, M ;
Bergman, F ;
Best, J ;
Bhasim, R ;
Bovell, G ;
Bowman, N ;
Brkic, M ;
Bromberger, D ;
Brown, D ;
Brown, J ;
Brownstein, M ;
Bruce, A ;
Buonopane, J ;
Burns, S ;
Butler, A ;
Byrne, D ;
Carson, J ;
Cassimatis, P ;
Chaffey, G ;
Chambers, D ;
Chan, WJ ;
Chan, B ;
Cheatham, J ;
Chen, R ;
Cheong, B ;
Cheung, C ;
Chin, J ;
Chiu, A ;
Choo, E .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2006, 295 (02) :180-189
[6]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003
[7]   High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study [J].
Diehm, C ;
Schuster, A ;
Allenberg, JR ;
Darius, H ;
Haberl, R ;
Lange, S ;
Pittrow, D ;
von Stritzky, B ;
Tepohl, G ;
Trampisch, HJ .
ATHEROSCLEROSIS, 2004, 172 (01) :95-105
[8]  
Friedman J., 2001, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, V1
[9]   Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study [J].
Hippisley-Cox, Julia ;
Coupland, Carol ;
Vinogradova, Yana ;
Robson, John ;
May, Margaret ;
Brindle, Peter .
BMJ-BRITISH MEDICAL JOURNAL, 2007, 335 (7611) :136-141
[10]  
Hirsch AT, 2006, CIRCULATION, V113, pE463, DOI 10.1161/CIRCULATIONAHA.106.174526