Witnessing eigenstates for quantum simulation of Hamiltonian spectra

被引:171
作者
Santagati, Raffaele [1 ,2 ]
Wang, Jianwei [1 ,2 ]
Gentile, Antonio A. [1 ,2 ]
Paesani, Stefano [1 ,2 ]
Wiebe, Nathan [3 ]
McClean, Jarrod R. [4 ,5 ]
Morley-Short, Sam [1 ,2 ,6 ]
Shadbolt, Peter J. [7 ]
Bonneau, Damien [1 ,2 ]
Silverstone, Joshua W. [1 ,2 ]
Tew, David P. [8 ,9 ]
Zhou, Xiaoqi [10 ,11 ]
O'Brien, Jeremy L. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
机构
[1] Univ Bristol, Quantum Engn Technol Labs, HH Wills Phys Lab, Bristol BS8 1FD, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1FD, Avon, England
[3] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
[4] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[5] Google Inc, Venice, CA 90291 USA
[6] Univ Bristol, Quantum Engn Ctr Doctoral Training, HH Wills Phys Lab, Bristol BS8 1FD, Avon, England
[7] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[8] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[9] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[10] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[11] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
CHEMISTRY; MOLECULES; STATE;
D O I
10.1126/sciadv.aap9646
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an "eigenstate witness" and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, amass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Why quantum chemistry is hard [J].
Aaronson, Scott .
NATURE PHYSICS, 2009, 5 (10) :707-708
[2]  
[Anonymous], 2014, MOL ELECT STRUCTURE, DOI DOI 10.1002/9781119019572
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Exponentially more precise quantum simulation of fermions in second quantization [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Kivlichan, Ian D. ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18
[5]   Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation [J].
Babbush, Ryan ;
McClean, Jarrod ;
Wecker, Dave ;
Aspuru-Guzik, Alan ;
Wiebe, Nathan .
PHYSICAL REVIEW A, 2015, 91 (02)
[6]   ON THE STABILITY OF SEQUENTIAL MONTE CARLO METHODS IN HIGH DIMENSIONS [J].
Beskos, Alexandros ;
Crisan, Dan ;
Jasra, Ajay .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) :1396-1445
[7]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[8]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[9]   Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance [J].
Brown, Kenneth R. ;
Clark, Robert J. ;
Chuang, Isaac L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[10]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605