Markovian versus non-Markovian stochastic quantization of a complex-action model

被引:0
作者
Krein, G. [1 ]
Menezes, G. [1 ]
Svaiter, N. F. [2 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2014年 / 29卷 / 06期
基金
巴西圣保罗研究基金会;
关键词
Stochastic quantization; complex actions; topological quantum mechanics; GENERALIZED LANGEVIN EQUATION; FIELD-THEORY; SIMULATIONS; DYNAMICS; FERMION;
D O I
10.1142/S0217751X14500304
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We analyze the Markovian and non-Markovian stochastic quantization methods for a complex action quantum mechanical model analog to Maxwell-Chern-Simons electrodynamics in Weyl gauge. We show through analytical methods convergence to the correct equilibrium state for both methods. Introduction of a memory kernel generates a non-Markovian process which has the effect of slowing down oscillations that arise in the Langevin-time evolution towards equilibrium of complex-action problems. This feature of non-Markovian stochastic quantization might be beneficial in large-scale numerical simulations of complex action field theories on a lattice.
引用
收藏
页数:14
相关论文
共 37 条
[1]  
Aarts G., 2010, J HIGH ENERGY PHYS, V1008
[2]   Stochastic quantization at finite chemical potential [J].
Aarts, Gert ;
Stamatescu, Ion-Olimpiu .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09)
[3]   Complex Langevin dynamics in the SU(3) spin model at nonzero chemical potential revisited [J].
Aarts, Gert ;
James, Frank A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01)
[4]   Complex Langevin: etiology and diagnostics of its main problem [J].
Aarts, Gert ;
James, Frank A. ;
Seiler, Erhard ;
Stamatescu, Ion-Olimpiu .
EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (10) :1-17
[5]   Adaptive stepsize and instabilities in complex Langevin dynamics [J].
Aarts, Gert ;
James, Frank A. ;
Seiler, Erhard ;
Stamatescu, Ion-Olimpiu .
PHYSICS LETTERS B, 2010, 687 (2-3) :154-159
[6]   Complex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas [J].
Aarts, Gert .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05)
[7]   Can Stochastic Quantization Evade the Sign Problem? The Relativistic Bose Gas at Finite Chemical Potential [J].
Aarts, Gert .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[8]   NUMERICAL PROBLEMS IN APPLYING THE LANGEVIN EQUATION TO COMPLEX EFFECTIVE ACTIONS [J].
AMBJORN, J ;
YANG, SK .
PHYSICS LETTERS B, 1985, 165 (1-3) :140-146
[9]   LANGEVIN SIMULATIONS OF CONFIGURATIONS WITH STATIC CHARGES [J].
AMBJORN, J ;
FLENSBURG, M ;
PETERSON, C .
PHYSICS LETTERS B, 1985, 159 (4-6) :335-340
[10]   Simulating nonequilibrium quantum fields with stochastic quantization techniques [J].
Berges, J ;
Stamatescu, IO .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)