The maximal theorem for weighted grand Lebesgue spaces

被引:140
作者
Fiorenza, Alberto [1 ,2 ]
Gupta, Babita [3 ]
Jain, Pankaj [4 ]
机构
[1] Univ Naples Federico 2, Dipartimento Costruzioni & Metodi Matemat Archite, I-80134 Naples, Italy
[2] CNR, Sez Napoli, Ist Applicaz Calcolo Mauro Picone, I-80131 Naples, Italy
[3] Univ Delhi, Shivaji Coll, Dept Math, Delhi 110027, India
[4] Univ Delhi, Deshbandhu Coll, Dept Math, New Delhi 110019, India
关键词
D O I
10.4064/sm188-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0, 1) subset of R, and the maximal function is localized in (0, 1). Moreover, we prove that the inequality parallel to Mf parallel to(p),w) <= c parallel to f parallel to(p),w) holds with some c independent of f iff w belongs to the well known Muckenhoupt class A(p), and therefore iff parallel to Mf parallel to(p,w) <= c parallel to f parallel to(p,w) for some c independent of f. Some results of similar type are discussed for the case of small Lebesgue spaces.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 20 条
[1]  
BENNETT C, 1983, INTERPOLATION OPERAT
[2]  
Capone C., 2005, J FUNCT SPACE APPL, V3, P73, DOI [DOI 10.1155/2005/192538, 10.1155/2005/192538]
[3]  
DIAATTA G, NONLINEAR A IN PRESS
[4]  
Duoandikoetxea J., 2000, GRAD STUD MATH, V29
[5]  
Fiorenza A, 2004, Z ANAL ANWEND, V23, P657
[6]  
FIORENZA A., 2000, Collect. Math., V51, P131
[7]  
GRECO L, 1993, DIFFERENTIAL INTEGRA, V6, P1089
[8]  
Hardy G.H., 1952, INEQUALITIES
[9]   Mappings of finite distortion: Monotonicity and continuity [J].
Iwaniec, T ;
Koskela, P ;
Onninen, J .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :507-531
[10]   ON THE INTEGRABILITY OF THE JACOBIAN UNDER MINIMAL HYPOTHESES [J].
IWANIEC, T ;
SBORDONE, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (02) :129-143