Vertex operator algebras and representations of affine Lie algebras

被引:22
作者
Meurman, A
Primc, M
机构
[1] LUND UNIV,DEPT MATH,S-22100 LUND,SWEDEN
[2] UNIV ZAGREB,DEPT MATH,ZAGREB 41000,CROATIA
关键词
vertex operator algebra; affine Lie algebra; integrable modules; Rogers-Ramanujan identities;
D O I
10.1007/BF00116522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We announce the construction of an explicit basis for all integrable highest weight modules over the Lie algebra A(1)((1)). The construction uses representations of vertex operator algebras and leads to combinatorial identities of Rogers-Ramanujan-type.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 12 条
[1]  
[Anonymous], MEM AM MATH SOC
[3]  
CHARI V, 1989, ADV SER MATH PHYS, V7, P3
[4]  
FRENKEL E, 1994, W1PLUSINFINITY W GLN
[5]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[6]   BASIC REPRESENTATIONS OF AFFINE LIE-ALGEBRAS AND DUAL RESONANCE MODELS [J].
FRENKEL, IB ;
KAC, VG .
INVENTIONES MATHEMATICAE, 1980, 62 (01) :23-66
[7]  
Frenkel IB, 1988, PURE APPL MATH
[8]  
GODDARD P, 1989, ADV SER MATH PHYS, V7
[9]   THE STRUCTURE OF STANDARD MODULES .1. UNIVERSAL-ALGEBRAS AND THE ROGERS-RAMANUJAN IDENTITIES [J].
LEPOWSKY, J ;
WILSON, RL .
INVENTIONES MATHEMATICAE, 1984, 77 (02) :199-290
[10]   THE STRUCTURE OF STANDARD MODULES .2. THE CASE A1(1), PRINCIPAL GRADATION [J].
LEPOWSKY, J ;
WILSON, RL .
INVENTIONES MATHEMATICAE, 1985, 79 (03) :417-442