Absolute value equation solution via concave minimization

被引:188
作者
Mangasarian, O. L. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Absolute value equation; Concave minimization; Successive linear programming;
D O I
10.1007/s11590-006-0005-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The NP-hard absolute value equation (AVE) Ax - vertical bar x vertical bar = b where A is an element of R-nxn and b is an element of R-n is solved by a succession of linear programs. The linear programs arise from a reformulation of the AVE as the minimization of a piecewise-linear concave function on a polyhedral set and solving the latter by successive linearization. A simple MATLAB implementation of the successive linearization algorithm solved 100 consecutively generated 1,000-dimensional random instances of the AVE with only five violated equations out of a total of 100, 000 equations.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1992, LINEAR COMPLEMENTARY
[2]  
[Anonymous], 1997, ACTA MATH VIETNAM
[3]   NP-COMPLETENESS OF THE LINEAR COMPLEMENTARITY-PROBLEM [J].
CHUNG, SJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (03) :393-399
[4]  
Cottle RW., 1968, Linear Algebra Appl, V1, P103, DOI [DOI 10.1016/0024-3795(68)90052-9, 10.1016/0024-3795(68)90052-9]
[5]  
*ILOG, 2003, ILOC CPLEX 9 0 US MA
[6]  
MANGASARIAN OL, 2005, LINEAR ALGE IN PRESS
[7]  
MANGASARIAN OL, 2005, 0504 U WISC DAT MIN
[8]  
*MATH WORKS INC, 1994, MATLAB US GUID
[9]  
Polyak B. T., 1987, INTRO OPTIMIZATION
[10]  
Rockafellar R. T., 1970, Convex Analysis