On the fourth order Schrodinger equation in four dimensions: Dispersive estimates and zero energy resonances

被引:20
作者
Green, William R. [1 ]
Toprak, Ebru [2 ]
机构
[1] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
GLOBAL WELL-POSEDNESS; WAVE-EQUATIONS; 4-DIMENSIONAL SCHRODINGER; OPERATORS; DECAY; OBSTRUCTIONS; SCATTERING; EXPANSIONS; TIME;
D O I
10.1016/j.jde.2019.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fourth order Schrodinger operator H = (-Delta)(2) + V for a decaying potential V in four dimensions. In particular, we show that the t(-1) decay rate holds in the L-1 -> L-infinity setting if zero energy is regular. Furthermore, if the threshold energies are regular then a faster decay rate of t(-1) (log t)(-2) is attained for large t, at the cost of logarithmic spatial weights. Zero is not regular for the free equation, hence the free evolution does not satisfy this bound due to the presence of a resonance at the zero energy. We provide a full classification of the different types of zero energy resonances and study the effect of each type on the time decay in the dispersive bounds. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1899 / 1954
页数:56
相关论文
共 35 条
[1]  
Agmon S., 1975, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V2, P151
[2]  
[Anonymous], 1964, Handbook of Mathematical Function with Formulas, Graphs and Mathematical Tables
[3]  
[Anonymous], 1995, J MATH SOC JAPAN, V47
[4]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[5]  
BenArtzi M, 1997, ANN I H POINCARE-PHY, V67, P29
[6]   Maximal and Minimal Forms for Generalized Schrodinger Operators [J].
Deng, Qingquan ;
Ding, Yong ;
Yao, Xiaohua .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (03) :727-738
[7]  
Erdoan MB., 2004, I, V1, P359, DOI 10.4310/DPDE.2004.v1.n4.a1
[8]   Dispersive Estimates for Four Dimensional Schrodinger and Wave Equations with Obstructions at Zero Energy [J].
Erdogan, M. Burak ;
Goldberg, Michael ;
Green, William R. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (10) :1936-1964
[9]  
Erdogan MB, 2013, T AM MATH SOC, V365, P6403
[10]   A Weighted Dispersive Estimate for Schrodinger Operators in Dimension Two [J].
Erdogan, M. Burak ;
Green, William R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) :791-811