Universality Limits involving Orthogonal Polynomials on an Arc of the Unit Circle

被引:5
作者
Lubinsky, Doron S. [1 ]
Nguyen, Vy [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Orthogonal polynomials; Subarc of unit circle; Universality limits; CHRISTOFFEL FUNCTIONS; ASYMPTOTICS; RESPECT;
D O I
10.1007/s40315-013-0011-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish universality limits for measures on a subarc of the unit circle. Assume that mu is a regular measure on such an arc, in the sense of Stahl, Totik, and Ullmann, and is absolutely continuous in an open arc containing some point . Assume, moreover, that is positive and continuous at z(0). Then universality for mu holds at z(0), in the sense that the reproducing kernel K-n (z,t) for mu satisfies lim(n ->infinity) K-n(z(0) exp(2 pi is/n), z(0) exp(2 pi i (t) over bar /n))/K-n (z(0), z(0)) = e(i pi(s-t))S((s-t)T(theta(0))), uniformly for s,t in compact subsets of the plane, where S(z) = sin pi z/pi z is the sinc kernel, and T/2 pi is the equilibrium density for the arc.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 25 条
[11]   Universality limits in the bulk for varying measures [J].
Levin, Eli ;
Lubinsky, Doron S. .
ADVANCES IN MATHEMATICS, 2008, 219 (03) :743-779
[12]   Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials [J].
Levin, Eli ;
Lubinsky, Doron S. .
JOURNAL OF APPROXIMATION THEORY, 2008, 150 (01) :69-95
[13]  
Lubinsky DS, 2008, CONTEMP MATH, V458, P281
[14]   Bulk universality holds in measure for compactly supported measures [J].
Lubinsky, Doron S. .
JOURNAL D ANALYSE MATHEMATIQUE, 2012, 116 :219-253
[15]   A new approach to universality limits involving orthogonal polynomials [J].
Lubinsky, Doron S. .
ANNALS OF MATHEMATICS, 2009, 170 (02) :915-939
[16]   Szego orthogonal polynomials with respect to an analytic weight:: Canonical representation and strong asymptotics [J].
Martinez-Finkelshtein, A. ;
McLaughlin, K. T. -R. ;
Saff, E. B. .
CONSTRUCTIVE APPROXIMATION, 2006, 24 (03) :319-363
[17]   Uniform Spacing of Zeros of Orthogonal Polynomials [J].
Mastroianni, Giuseppe ;
Totik, Vilmos .
CONSTRUCTIVE APPROXIMATION, 2010, 32 (02) :181-192
[18]  
Ransford T., 1995, Potential Theory in the Complex Plane
[19]  
Simon B, 2005, ORTHOGONAL POLYNOM 1
[20]   Two extensions of Lubinsky's universality theorem [J].
Simon, Barry .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 105 (1) :345-362