Universality Limits involving Orthogonal Polynomials on an Arc of the Unit Circle

被引:5
作者
Lubinsky, Doron S. [1 ]
Nguyen, Vy [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Orthogonal polynomials; Subarc of unit circle; Universality limits; CHRISTOFFEL FUNCTIONS; ASYMPTOTICS; RESPECT;
D O I
10.1007/s40315-013-0011-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish universality limits for measures on a subarc of the unit circle. Assume that mu is a regular measure on such an arc, in the sense of Stahl, Totik, and Ullmann, and is absolutely continuous in an open arc containing some point . Assume, moreover, that is positive and continuous at z(0). Then universality for mu holds at z(0), in the sense that the reproducing kernel K-n (z,t) for mu satisfies lim(n ->infinity) K-n(z(0) exp(2 pi is/n), z(0) exp(2 pi i (t) over bar /n))/K-n (z(0), z(0)) = e(i pi(s-t))S((s-t)T(theta(0))), uniformly for s,t in compact subsets of the plane, where S(z) = sin pi z/pi z is the sinc kernel, and T/2 pi is the equilibrium density for the arc.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 25 条