Synthesis and Enhanced Lithium Storage Properties of Electrospun V2O5 Nanofibers in Full-Cell Assembly with a Spinel Li4Ti5O12 Anode

被引:64
|
作者
Cheah, Yan Ling [1 ,2 ]
Aravindan, Vanchiappan [2 ]
Madhavi, Srinivasan [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Singapore 637553, Singapore
关键词
Li-ion battery; cathode; vanadium pentoxide nanofibers; spinel Li4Ti5O12 anode; full-cell; electrospinning; ELEVATED-TEMPERATURE PERFORMANCE; ELECTROCHEMICAL-BEHAVIOR; VANADIUM PENTOXIDE; CATHODE MATERIALS; ION; BATTERIES;
D O I
10.1021/am400666n
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully demonstrated the reversible electrochemical Li-insertion properties of electrospun vanadium pentoxide nanofibers (VNF) in full-cell assembly with a Li4Ti5O12 anode. Li-insertion in to VNF is restricted for the intercalation of 1 mol of Li by adjusting lower cutoff potential (2.5-4 V vs Li). The half-cell (Li/VNF) delivered a reversible capacity of similar to 148 mA h g(-1) with excellent cycleability and capacity retention of over 85% after 30 cycles. Full-cell assembly is conducted for such VNF cathodes after the electrochemical lithiation (LiV2O5) with spinel Li4Ti5O12 anode under the optimized mass loadings. Full-cell (LiV2O5/Li4Ti5O12) delivered an excellent cycleability irrespective of applied current densities with good reversible capacity of similar to 119 mA h g(-1) (at 20 mA g(-1) current density). This work clearly demonstrates the possibility of using LiV2O5/Li4Ti5O12 configuration for high power applications such as hybrid electric vehicles and electric vehicles in the near future.
引用
收藏
页码:3475 / 3480
页数:6
相关论文
共 50 条
  • [1] Hydrothermal synthesis of spherical Li4Ti5O12 material for a novel durable Li4Ti5O12/LiMn2O4 full lithium ion battery
    Yan, Hui
    Zhang, Ding
    Guo, Guibao
    Wang, Zhengde
    Liu, Yunying
    Wang, Xiaoxia
    CERAMICS INTERNATIONAL, 2016, 42 (13) : 14855 - 14861
  • [2] Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials
    Seo, Jin-Seong
    Na, Byung-Ki
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2019, 57 (06): : 861 - 867
  • [3] Mesoporous Li4Ti5O12 Hollow Spheres with Enhanced Lithium Storage Capability
    Yu, Le
    Wu, Hao Bin
    Lou, Xiong Wen
    ADVANCED MATERIALS, 2013, 25 (16) : 2296 - 2300
  • [4] Nanosize Storage Properties in Spinel Li4Ti5O12 Explained by Anisotropic Surface Lithium Insertion
    Ganapathy, Swapna
    Wagemaker, Marnix
    ACS NANO, 2012, 6 (10) : 8702 - 8712
  • [5] An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell
    Wang, Zhiguo
    Wang, Zhixing
    Peng, Wenjie
    Guo, Huajun
    Li, Xinhai
    CERAMICS INTERNATIONAL, 2014, 40 (07) : 10053 - 10059
  • [6] Temperature effect on spinel Li4Ti5O12 as anode materials for lithium ion batteries
    Zhang, Zhenwei
    Cao, Liyun
    Huang, Jianfeng
    Wang, Dunqiang
    Meng, Yan
    Cai, Yingjun
    ELECTROCHIMICA ACTA, 2013, 88 : 443 - 446
  • [7] Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries
    Li, Shifeng
    Guo, Jiangdong
    Ma, Qianli
    Yang, Ying
    Dong, Xiangting
    Yang, Ming
    Yu, Wensheng
    Wang, Jinxian
    Liu, Guixia
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (10) : 2779 - 2790
  • [8] Enhanced Rate Performance of Li4Ti5O12 Anode for Advanced Lithium Batteries
    Wang, Yong
    Zhang, Yi-xiao
    Yang, Wei-Jing
    Jiang, Shuai
    Hou, Xu-wang
    Guo, Rui
    Liu, Wen
    Huang, Ping
    Lu, Jiachun
    Gu, Hai-tao
    Xie, Jing-ying
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166 (03) : A5014 - A5018
  • [9] Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction
    Yin, S. Y.
    Song, L.
    Wang, X. Y.
    Zhang, M. F.
    Zhang, K. L.
    Zhang, Y. X.
    ELECTROCHIMICA ACTA, 2009, 54 (24) : 5629 - 5633
  • [10] Insight into effects of graphene and zinc oxide in Li4Ti5O12 as anode materials for Li-ion full-cell battery
    Naserieh, Arsalan
    Gholami, Tahereh
    Ghiyasiyan-Arani, Maryam
    Salavati-Niasari, Masoud
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 27705 - 27712