Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces

被引:14
|
作者
Chang, Shih-sen [1 ]
Wang, Lin [1 ]
Lee, Heung Wing Joseph [2 ]
Chan, Chi-kin [2 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Yunnan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
来源
FIXED POINT THEORY AND APPLICATIONS | 2013年
关键词
total asymptotically nonexpansive mappings; total asymptotically nonexpansive nonself mappings; CAT(0) space; demiclosed principle; Delta-convergence; strong convergence; mixed Agarwal-O'Regan-Sahu type iterative scheme; FIXED-POINTS; WEAK-CONVERGENCE; THEOREMS;
D O I
10.1186/1687-1812-2013-122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O'Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Delta-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O'Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces
    Shih-sen Chang
    Lin Wang
    Heung Wing Joseph Lee
    Chi-kin Chan
    Fixed Point Theory and Applications, 2013
  • [2] Strong and Δ-convergence theorems for total asymptotically nonexpansive nonself mappings in CAT(0) spaces
    Yang, Li
    Zhao, Fu Hai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [3] Strong and △-convergence theorems for total asymptotically nonexpansive nonself mappings in CAT(0) spaces
    Li Yang
    Fu Hai Zhao
    Journal of Inequalities and Applications, 2013
  • [4] CONVERGENCE THEOREMS FOR TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN CAT (0) SPACES
    Thakur, Balwant Singh
    Thakur, Dipti
    Agarwal, Ravi P.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (11) : 2059 - 2074
  • [5] Δ-Convergence and Strong Convergence for Asymptotically Nonexpansive Mappings on a CAT(0) Space
    Yambangwai, Damrongsak
    Thianwan, Tanakit
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 813 - 826
  • [6] Δ-Convergence Problems for Asymptotically Nonexpansive Mappings in CAT(0) Spaces
    Shi, Luo Yi
    Chen, Ru Dong
    Wu, Yu Jing
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [7] Convergence theorems for total asymptotically nonexpansive mappings in CAT(κ) spaces
    Chang, Shih-sen
    Zhao, Liangcai
    Liu, Min
    Tang, Jinfang
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2023, 2023 (01):
  • [8] Demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces
    Chang, S. S.
    Wang, L.
    Lee, H. W. Joseph
    Chan, C. K.
    Yang, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (05) : 2611 - 2617
  • [9] ON THE STRONG AND Delta-CONVERGENCE FOR TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS ON A CAT(0) SPACE
    Basarir, M.
    Sahin, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2013, 5 (02) : 170 - 179
  • [10] Iterative Algorithm and Δ-Convergence Theorems for Total Asymptotically Nonexpansive Mappings in CAT(0) Spaces
    Tang, J. F.
    Chang, S. S.
    Lee, H. W. Joseph
    Chan, C. K.
    ABSTRACT AND APPLIED ANALYSIS, 2012,