Experimental study on flexural behavior of concrete beams reinforced by steel-fiber reinforced polymer composite bars

被引:83
|
作者
Sun, Z. Y. [1 ]
Yang, Y. [1 ]
Qin, W. H. [1 ,2 ]
Ren, S. T. [2 ]
Wu, G. [1 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Concrete & Prestressed Concrete Struct, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Civil Engn, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Experimental study; concrete beam; steel-fiber reinforced polymer composite bar; flexural behavior; performance/cost ratio; MECHANICAL-PROPERTIES; PERFORMANCE;
D O I
10.1177/0731684412456446
中图分类号
TB33 [复合材料];
学科分类号
摘要
Experimental studies investigating the flexural behavior of six concrete beams were conducted with various reinforcements, including ordinary steel bars, steel-fiber reinforced polymer composite bars, pure fiber-reinforced polymer bars (either carbon fiber reinforced polymer bars or basalt fiber reinforced polymer bars), and hybrid bars (steel bars and basalt fiber reinforced polymer bars). The test results show the following: (a) steel-fiber reinforced polymer composite bar beams exhibit stable post-yield stiffness after the yielding of the inner steel bar of the steel-fiber reinforced polymer composite bar and concrete crushed after the rupture of the outer fiber-reinforced polymer of the steel-fiber reinforced polymer composite bar; (b) the ordinary reinforced concrete beam has the largest ductility coefficient, but the ultimate load was just approximately 31% of that of the corresponding steel-fiber reinforced polymer composite bar beams; (c) brittle shear failure was observed for both fiber reinforced polymer bar reinforced beams because of the high ultimate tensile strength of fiber-reinforced polymer bar; (d) although the steel-fiber-reinforced polymer ratio of the hybrid beam (reinforced by steel and basalt fiber reinforced polymer bars) is the same as that of the steel-fiber reinforced polymer composite bar beams, the ultimate load of hybrid beam is approximately 72% of that of the corresponding steel-fiber reinforced polymer composite bar, which is caused by the premature slip of basalt fiber reinforced polymer bar in hybrid beam where the bond stress is large; (e) by comparing coefficients of displacement ductility and energy ductility, it is demonstrated that energy ductility coefficient is more reasonable for evaluating the performance of steel-fiber reinforced polymer composite bar beams take into account of the post-yield stiffness of steel-fiber reinforced polymer composite bar beams; and (f) high initial stiffness and good ductility for steel-fiber reinforced polymer composite bar reinforced concrete beams can be obtained by adjusting the steel-fiber-reinforced polymer ratio and fiber-reinforced polymer type. Furthermore, because of the steel-fiber reinforced polymer composite bar's outer fiber-reinforced polymer, steel-fiber reinforced polymer composite bar reinforced concrete beams have a high durability.
引用
收藏
页码:1737 / 1745
页数:9
相关论文
共 50 条
  • [31] FLEXURAL BEHAVIOR OF CONCRETE BEAMS REINFORCED WITH HYBRID (FRP AND STEEL) BARS
    Zhang, Xiao-Liang
    Qu, Wen-Jun
    ISISS '2009: INNOVATION & SUSTAINABILITY OF STRUCTURES, VOLS 1 AND 2, 2009, : 330 - 335
  • [32] Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars
    Qu, Wenjun
    Zhang, Xiaoliang
    Huang, Haiqun
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2009, 13 (05) : 350 - 359
  • [33] Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
    Lee, Won K.
    Jansen, Daniel C.
    Berlin, Kenneth B.
    Cohen, Ian E.
    ACI STRUCTURAL JOURNAL, 2010, 107 (03) : 321 - 329
  • [34] Evaluation of deflection and flexural performance of reinforced concrete beams with glass fiber reinforced polymer bars
    Muhammad, Muhammad A.
    Ahmed, Faris R.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [35] Experimental study on shearing capacity of concrete beams longitudinal reinforced with steel fiber composite bars and BFRP bars
    Qin W.
    Hui Z.
    Zhang P.
    Zhang Z.
    Li M.
    Xie P.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2022, 43 (11): : 209 - 220
  • [36] Flexural strengthening of concrete beams with near-surface mounted steel-fiber-reinforced polymer composite bars
    Sun, Z. Y.
    Wu, G.
    Wu, Z. S.
    Luo, Y. B.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (18) : 1529 - 1537
  • [37] Flexural behaviour of reinforced concrete beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars: experimental and analytical study
    Sasikumar P.
    Manju R.
    Asian Journal of Civil Engineering, 2024, 25 (4) : 3623 - 3636
  • [38] Flexural behavior of concrete beams reinforced by partially unbonded steel-FRP composite bars
    Sun, Yunlou
    Fu, Jinyu
    Sun, Zeyang
    Zhang, Jian
    Wei, Yang
    Wu, Gang
    ENGINEERING STRUCTURES, 2022, 272
  • [39] Experimental study on flexural behaviors of FRP and steel bars hybrid reinforced concrete beams
    Wei, Bingyan
    He, Xiongjun
    Zhou, Ming
    Wang, Huayi
    He, Jia
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [40] Flexural Behavior of ECC-Concrete Hybrid Composite Beams Reinforced with FRP and Steel Bars
    Ge, Wen-Jie
    Ashour, Ashraf F.
    Yu, Jiamin
    Gao, Peiqi
    Cao, Da-Fu
    Cai, Chen
    Ji, Xiang
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2019, 23 (01)