Dynamics of symplectic fluids and point vortices

被引:5
作者
Khesin, Boris [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DIFFEOMORPHISMS; MOTION;
D O I
10.1007/s00039-012-0182-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the Hamiltonian formalism for the Euler equation of symplectic fluids, introduce symplectic vorticity, and study related invariants. In particular, this allows one to extend Ebin's long-time existence result for geodesics on the symplectomorphism group to metrics not necessarily compatible with the symplectic structure. We also study the dynamics of symplectic point vortices, describe their symmetry groups and integrability.
引用
收藏
页码:1444 / 1459
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 2001, NOTICES AMS
[3]  
Arnold V.I., 1998, TOPOLOGICAL METHODS, V125
[4]  
BUTLER L.T., 2010, ARXIV10110172
[5]   Geodesics On The Symplectomorphism Group [J].
Ebin, David G. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (01) :202-212
[6]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[7]   STEADY FLUID-FLOWS AND SYMPLECTIC-GEOMETRY [J].
GINZBURG, VL ;
KHESIN, B .
JOURNAL OF GEOMETRY AND PHYSICS, 1994, 14 (02) :195-210
[8]  
Hofer H., 1994, Birkhauser Advanced Texts: Basler Lehrbucher
[9]  
Khesin B, 2012, MOSC MATH J, V12, P413
[10]   Vortex motion on surfaces with constant curvature [J].
Kimura, Y .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1981) :245-259