Hyperspectral Image Denoising Using a Spatial-Spectral Monte Carlo Sampling Approach

被引:16
|
作者
Xu, Linlin [1 ]
Li, Fan [1 ]
Wong, Alexander [1 ]
Clausi, David A. [1 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bayesian least squares optimization; hyperspectral imagery denoising; Monte Carlo Sampling; spatial-spectral similarity likelihood; PRINCIPAL COMPONENT ANALYSIS; BIVARIATE WAVELET SHRINKING; DIMENSIONALITY REDUCTION; OPERATIONAL METHOD; NOISE ESTIMATION; IMPROVEMENT; REMOVAL;
D O I
10.1109/JSTARS.2015.2402675
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral image (HSI) denoising is essential for enhancing HSI quality and facilitating HSI processing tasks. However, the reduction of noise in HSI is a difficult work, primarily due to the fact that HSI consists much more spectral bands than other remote sensing images. Therefore, comparing with other image denoising jobs that rely primarily on spatial information, efficient HSI denoising requires the utilization of both spatial and spectral information. In this paper, we design an unsupervised spatial-spectral HSI denoising approach based on Monte Carlo sampling (MCS) technique. This approach allows the incorporation of both spatial and spectral information for HSI denoising. Moreover, it addresses the noise variance heterogeneity effect among different HSI bands. In the proposed HSI denoising scheme, MCS is used to estimate the posterior distribution, in order to solve a Bayesian least squares optimization problem. Based on the proposed scheme, we iterate all pixels in HIS and denoise them sequentially. A referenced pixel in hyperspectral image is denoised as follows. First, some samples are randomly drawn from image space close to the referenced pixel. Second, based on a spatial-spectral similarity likelihood, relevant samples are accepted into a sample set. Third, all samples in the accepted set will be used for calculating the estimation of posterior distribution. Finally, based on the posterior, the noise-free pixel value is estimated as the discrete conditional mean. The proposed method is tested on both simulated and real hyperspectral images, in comparison with several other popular methods. The results demonstrate that the proposed method is capable of removing the noise largely, while also preserving image details very well.
引用
收藏
页码:3025 / 3038
页数:14
相关论文
共 50 条
  • [41] A spatial-spectral SIFT for hyperspectral image matching and classification
    Li, Yanshan
    Li, Qingteng
    Liu, Yan
    Xie, Weixin
    PATTERN RECOGNITION LETTERS, 2019, 127 : 18 - 26
  • [42] Learning Spatial-Spectral Features for Hyperspectral Image Classification
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5138 - 5147
  • [43] Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image
    Lei, Jianjun
    Li, Xinyu
    Peng, Bo
    Fang, Leyuan
    Ling, Nam
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) : 2686 - 2697
  • [44] Spatial-spectral morphological mamba for hyperspectral image classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Khan, Adil Mehmood
    Mazzara, Manuel
    Distefano, Salvatore
    Usama, Muhammad
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    Hong, Danfeng
    NEUROCOMPUTING, 2025, 636
  • [45] A Spatial-Spectral Feature Descriptor for Hyperspectral Image Matching
    Yu, Yang
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    REMOTE SENSING, 2021, 13 (23)
  • [46] Achieving Better Category Separability for Hyperspectral Image Classification: A Spatial-Spectral Approach
    Bai, Jing
    Shi, Wei
    Xiao, Zhu
    Ali, Talal Ahmed Ali
    Ye, Fawang
    Jiao, Licheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9621 - 9635
  • [47] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [48] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [49] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
    Li, Yapeng
    Luo, Yong
    Zhang, Lefei
    Wang, Zengmao
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [50] An approach for Hyperspectral image classification utilization spatial-spectral combined kernel SVM
    Wang, Hailei
    Sun, Bingyun
    Gui, Yuanmiao
    Chen, Yanping
    Zhou, Dongbo
    Wu, Xuelian
    MIPPR 2015: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2015, 9811