On global well-posedness for a class of nonlocal dispersive wave equations

被引:0
作者
Molinet, L [1 ]
Ribaud, F
机构
[1] Univ Paris 13, Inst Galilee, LAGA, F-93430 Villetaneuse, France
[2] Univ Marne La Vallee Cite Descartes, Equipe Anal & Math Appliques, F-77454 Marne La Vallee 2, France
关键词
wave equation; global existence; Bourgain spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global well-posedness in Sobolev spaces with weighted low frequencies for a class of non local dispersive wave equations.
引用
收藏
页码:657 / 668
页数:12
相关论文
共 19 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]   Decay and analyticity of solitary waves [J].
Bona, JL ;
Li, YA .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (05) :377-430
[3]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[4]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[5]  
COLLIANDER J, 2003, DIFFERENTIAL INTEGRA, V16, P1441
[6]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[7]  
Kenig Carlos, 1991, J. Am. Math. Soc., V4, P323, DOI [DOI 10.2307/2939277, 10.1090/s0894-0347-1991-1086966-0, DOI 10.1090/S0894-0347-1991-1086966-0, 10.2307/2939277]
[8]   OSCILLATORY INTEGRALS AND REGULARITY OF DISPERSIVE EQUATIONS [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (01) :33-69
[9]  
Kenig CE, 2003, MATH RES LETT, V10, P879
[10]   On the ill-posedness of some canonical dispersive equations [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :617-633