Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology

被引:9
作者
Liu, Hanbing [1 ]
Li, Wenjun [1 ]
Luo, Guobao [1 ]
Liu, Shiqi [1 ]
Lyu, Xiang [1 ]
机构
[1] Jilin Univ, Coll Transportat, Changchun 130025, Peoples R China
关键词
crumb rubber; basal fiber; orthogonal test; mechanical properties; acoustic emission; fracture behavior; PERFORMANCE; AGGREGATE; CLASSIFICATION; PARTICLES; STRENGTH;
D O I
10.3390/s20123513
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Basalt fiber and crumb rubber, as excellent road material modifiers, have great advantages in improving the mechanical properties and fracture behavior of concrete. Acoustic emission (AE) is a nondestructive testing and real-time monitoring technique used to characterize the fracture behavior of concrete specimens. The object of this paper is to investigate the effects of crumb rubber replacement rate, basalt fiber content and water-binder ratio on the mechanical properties and fracture behavior of crumb rubber basalt fiber concrete (CRBFC) based on orthogonal test. The fracture behavior of a CRBFC specimen under three-point flexural conditions was monitored by AE technology and the relative cumulative hit (RCH) was defined to characterize the internal damage degree of CRBFC. The experimental results showed that, considering the mechanical strength and fracture damage behavior of CRBFC, the optimal crumb rubber replacement rate, basalt fiber content and water-binder ratio are 10%, 2 kg/m(3)and 0.46, respectively. In addition, it was found that AE parameters can effectively characterize the fracture behavior of CRBFC. The fracture stages of CRBFC can be divided according to the cumulative AE hits and counts. AE amplitude value can be used as an early warning of CRBFC specimen fracture. Moreover, the fracture mode can be identified by RA and average frequency (AF) values variation during the loading process.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 46 条
[1]   Classification of damage in self-consolidating rubberized concrete using acoustic emission intensity analysis [J].
Abouhussien, Ahmed A. ;
Hassan, Assem A. A. .
ULTRASONICS, 2020, 100
[2]   Reclamation and recycling of waste rubber [J].
Adhikari, B ;
De, D ;
Maiti, S .
PROGRESS IN POLYMER SCIENCE, 2000, 25 (07) :909-948
[3]   Acoustic emission characterization of the fracture process in fibre reinforced concrete [J].
Aggelis, D. G. ;
Soulioti, D. V. ;
Sapouridis, N. ;
Barkoula, N. M. ;
Paipetis, A. S. ;
Matikas, I. E. .
CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (11) :4126-4131
[4]   Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement [J].
Al-Masoodi, Aiman Hasan Hamood ;
Kawan, Ahmed ;
Kasmuri, Mudiono ;
Hamid, R. ;
Khan, M. N. N. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 104 :247-262
[5]   The properties of chopped basalt fibre reinforced self-compacting concrete [J].
Algin, Zeynep ;
Ozen, Mustafa .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 186 :678-685
[6]   Mechanical Properties of Waste Tire Rubber Concrete [J].
Aslani, Farhad .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (03)
[7]   Mechanical behaviour of basalt fibre reinforced concrete [J].
Branston, John ;
Das, Sreekanta ;
Kenno, Sara Y. ;
Taylor, Craig .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 124 :878-886
[8]   Reliable onset time determination and source location of acoustic emissions in concrete structures [J].
Carpinteri, A. ;
Xu, J. ;
Lacidogna, G. ;
Manuello, A. .
CEMENT & CONCRETE COMPOSITES, 2012, 34 (04) :529-537
[9]   Experimental investigation of concrete fracture behavior with different loading rates based on acoustic emission [J].
Chen, Chen ;
Fan, Xiangqian ;
Chen, Xudong .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 237
[10]   Rubber modified concrete improved by chemically active coating and silane coupling agent [J].
Dong, Qiao ;
Huang, Baoshan ;
Shu, Xiang .
CONSTRUCTION AND BUILDING MATERIALS, 2013, 48 :116-123