Free-space quantum key distribution with a high generation rate potassium titanyl phosphate waveguide photon-pair source

被引:3
|
作者
Wilson, Jeffrey D. [1 ]
Chaffee, Dalton W. [1 ]
Wilson, Nathaniel C. [1 ]
Lekki, John D. [1 ]
Tokars, Roger P. [1 ]
Pouch, John J. [1 ]
Roberts, Tony D. [2 ]
Battle, Philip [2 ]
Floyd, Bertram M. [3 ]
Lind, Alexander J. [1 ]
Cavin, John D. [1 ]
Helmick, Spencer R. [1 ]
机构
[1] NASA Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA
[2] AdvR Inc, 2310 Univ Way,Bldg 1-1, Bozeman, MT 59715 USA
[3] Sierra Lobo Inc, 102 Pinnacle Dr, Fremont, OH 43420 USA
来源
QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XIV | 2016年 / 9980卷
关键词
photon-pair source; entangled photons; quantum key distribution; quantum communications; B92; PARAMETRIC FLUORESCENCE;
D O I
10.1117/12.2237742
中图分类号
O59 [应用物理学];
学科分类号
摘要
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory freespace QKD experiment with the B92 protocol are also presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Free-space quantum key distribution
    Garcia-Martinez, M. J.
    Soto, D.
    Denisenko, N.
    Fernandez, V.
    OPTICA PURA Y APLICADA, 2011, 44 (02): : 233 - 239
  • [2] Single-photon acquisition probability for free-space quantum key distribution
    Zhang, GY
    Ma, J
    Tan, LY
    Yu, SY
    Han, QQ
    Chen, YL
    QUANTUM OPTICS AND APPLICATIONS IN COMPUTING AND COMMUNICATIONS II, 2005, 5631 : 173 - 180
  • [3] Free-space quantum key distribution at night
    Buttler, WT
    Hughes, RJ
    Kwiat, PG
    Lamoreaux, SK
    Luther, GG
    Morgan, GL
    Nordholt, JE
    Peterson, CG
    Simmons, CM
    PHOTONIC QUANTUM COMPUTING II, 1998, 3385 : 14 - 22
  • [4] Entangled free-space quantum key distribution
    Weihs, Gregor
    Erven, Christopher
    QUANTUM COMMUNICATIONS REALIZED, 2007, 6780
  • [5] The Evolution of Free-Space Quantum Key Distribution
    Bisztray, Tamas
    Bacsardi, Laszlo
    INFOCOMMUNICATIONS JOURNAL, 2018, 10 (01): : 22 - 30
  • [6] Entanglement Based Free-Space Quantum Key Distribution
    Erven, C.
    Couteau, C.
    Laflamme, R.
    Weihs, G.
    PHOTONICS NORTH 2008, 2008, 7099
  • [7] Present and future free-space quantum key distribution
    Nordholt, JE
    Hughes, RJ
    Morgan, GL
    Peterson, CG
    Wipf, CC
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIV, 2002, 4635 : 116 - 126
  • [8] FREE-SPACE QUANTUM-KEY DISTRIBUTION WITH POLARIZATION COMPENSATION
    Zhang, Guangyu
    Song, Siyu
    Li, Junlin
    Wang, Wanying
    Wang, Chuan
    JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (06) : 579 - 583
  • [9] Free-space quantum-key distribution with polarization compensation
    Guangyu Zhang
    Siyu Song
    Junlin Li
    Wanying Wang
    Chuan Wang
    Journal of Russian Laser Research, 2011, 32 : 579 - 583
  • [10] Free-space quantum key distribution at GHz repetition rates
    Bienfang, J. C.
    Rogers, Daniel
    Restelli, Alessandro
    Clark, Charles W.
    Williams, Carl J.
    Mink, Alan
    Hershman, Barry
    Nakassis, Tassos
    Tang, X.
    Su, D.
    OPTOELECTRONIC INTEGRATED CIRCUITS IX, 2007, 6476