Colloquium: Machine learning in nuclear physics

被引:108
|
作者
Boehnlein, Amber [1 ]
Diefenthaler, Markus [1 ]
Sato, Nobuo [1 ]
Schram, Malachi [1 ]
Ziegler, Veronique [1 ]
Fanelli, Cristiano [2 ,3 ]
Hjorth-Jensen, Morten [4 ,5 ,6 ]
Horn, Tanja [7 ,8 ]
Kuchera, Michelle P. [9 ,10 ]
Lee, Dean [4 ]
Nazarewicz, Witold [4 ]
Ostroumov, Peter [4 ]
Orginos, Kostas [1 ]
Poon, Alan [11 ]
Wang, Xin-Nian [11 ]
Scheinker, Alexander [12 ]
Smith, Michael S. [13 ]
Pang, Long-Gang [14 ]
机构
[1] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[2] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[3] MIT, Inst Artificial Intelligence & Fundamental Interac, Cambridge, MA 02139 USA
[4] Michigan State Univ, Fac Rare Isotope Beams, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[6] Univ Oslo, Ctr Comp Sci Educ, Dept Phys, N-0316 Oslo, Norway
[7] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[8] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[9] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[10] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[11] Lawrence Berkeley Natl Lab, Nucl Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[12] Accelerator Operat & Technol Div Appl Electrodynam, Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[13] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA
[14] Cent China Normal Univ, Inst Particle Phys, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
COVARIATE SHIFT; NEURAL-NETWORKS; CLASSIFICATION; IDENTIFICATION; PREDICTION; MODEL;
D O I
10.1103/RevModPhys.94.031003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Advances in machine learning methods provide tools that have broad applicability in scientific research. These techniques are being applied across the diversity of nuclear physics research topics, leading to advances that will facilitate scientific discoveries and societal applications. This Colloquium provides a snapshot of nuclear physics research, which has been transformed by machine learning techniques.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Pervasive machine learning in physics
    Nature Reviews Physics, 2022, 4 : 353 - 353
  • [22] Machine learning for quantum physics
    Hush, Michael R.
    SCIENCE, 2017, 355 (6325) : 580 - 580
  • [23] Colloquium: Majorana fermions in nuclear, particle, and solid-state physics
    Elliott, Steven R.
    Franz, Marcel
    REVIEWS OF MODERN PHYSICS, 2015, 87 (01)
  • [24] Machine learning and statistical physics: preface
    Agliari, Elena
    Barra, Adriano
    Sollich, Peter
    Zdeborova, Lenka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [25] Machine learning in physics: A short guide
    Rodrigues, Francisco A.
    EPL, 2023, 144 (02)
  • [26] Learning new physics from a machine
    D'Agnolo, Raffaele Tito
    Wulzer, Andrea
    PHYSICAL REVIEW D, 2019, 99 (01)
  • [27] Machine Learning for Climate Physics and Simulations
    Lai, Ching-Yao
    Hassanzadeh, Pedram
    Sheshadri, Aditi
    Sonnewald, Maike
    Ferrari, Raffaele
    Balaji, Venkatramani
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2025, 16 : 343 - 365
  • [28] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [29] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [30] Machine learning for condensed matter physics
    Bedolla, Edwin
    Padierna, Luis Carlos
    Castaneda-Priego, Ramon
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (05)