Colloquium: Machine learning in nuclear physics

被引:133
作者
Boehnlein, Amber [1 ]
Diefenthaler, Markus [1 ]
Sato, Nobuo [1 ]
Schram, Malachi [1 ]
Ziegler, Veronique [1 ]
Fanelli, Cristiano [2 ,3 ]
Hjorth-Jensen, Morten [4 ,5 ,6 ]
Horn, Tanja [7 ,8 ]
Kuchera, Michelle P. [9 ,10 ]
Lee, Dean [4 ]
Nazarewicz, Witold [4 ]
Ostroumov, Peter [4 ]
Orginos, Kostas [1 ]
Poon, Alan [11 ]
Wang, Xin-Nian [11 ]
Scheinker, Alexander [12 ]
Smith, Michael S. [13 ]
Pang, Long-Gang [14 ]
机构
[1] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[2] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[3] MIT, Inst Artificial Intelligence & Fundamental Interac, Cambridge, MA 02139 USA
[4] Michigan State Univ, Fac Rare Isotope Beams, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[6] Univ Oslo, Ctr Comp Sci Educ, Dept Phys, N-0316 Oslo, Norway
[7] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[8] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[9] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[10] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[11] Lawrence Berkeley Natl Lab, Nucl Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[12] Accelerator Operat & Technol Div Appl Electrodynam, Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[13] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA
[14] Cent China Normal Univ, Inst Particle Phys, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
COVARIATE SHIFT; NEURAL-NETWORKS; CLASSIFICATION; IDENTIFICATION; PREDICTION; MODEL;
D O I
10.1103/RevModPhys.94.031003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Advances in machine learning methods provide tools that have broad applicability in scientific research. These techniques are being applied across the diversity of nuclear physics research topics, leading to advances that will facilitate scientific discoveries and societal applications. This Colloquium provides a snapshot of nuclear physics research, which has been transformed by machine learning techniques.
引用
收藏
页数:32
相关论文
共 400 条
[1]   Comparison of algorithmic and machine learning approaches for the automatic fitting of Gaussian peaks [J].
Abdel-Aal, RE .
NEURAL COMPUTING & APPLICATIONS, 2002, 11 (01) :17-29
[2]   Determination of radioisotopes in gamma-ray spectroscopy using abductive machine learning [J].
AbdelAal, RE ;
AlHaddad, MN .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 391 (02) :275-288
[3]  
Khalek RA, 2021, Arxiv, DOI [arXiv:2103.05419, DOI 10.1016/J.NUCLPHYSA.2022.122447]
[4]  
Abgrall N., 2021, arXiv
[5]   Constraints on large-x parton distributions from new weak boson production and deep-inelastic scattering data [J].
Accardi, A. ;
Brady, L. T. ;
Melnitchouk, W. ;
Owens, J. F. ;
Sato, N. .
PHYSICAL REVIEW D, 2016, 93 (11)
[6]  
Acharya B., 2021, ARXIV
[7]   Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an Artificial Neural-Network Correlator Ansatz [J].
Adams, Corey ;
Carleo, Giuseppe ;
Lovato, Alessandro ;
Rocco, Noemi .
PHYSICAL REVIEW LETTERS, 2021, 127 (02)
[8]   Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE [J].
Adams, D. Q. ;
Alduino, C. ;
Alfonso, K. ;
Avignone, F. T., III ;
Azzolini, O. ;
Bari, G. ;
Bellini, F. ;
Benato, G. ;
Beretta, M. ;
Biassoni, M. ;
Branca, A. ;
Brofferio, C. ;
Bucci, C. ;
Camilleri, J. ;
Caminata, A. ;
Campani, A. ;
Canonica, L. ;
Cao, X. G. ;
Capelli, S. ;
Cappelli, L. ;
Cardani, L. ;
Carniti, P. ;
Casali, N. ;
Celi, E. ;
Chiesa, D. ;
Clemenza, M. ;
Copello, S. ;
Cremonesi, O. ;
Creswick, R. J. ;
D'Addabbo, A. ;
Dafinei, I ;
Dell'Oro, S. ;
Di Domizio, S. ;
Dompe, V ;
Fang, D. Q. ;
Fantini, G. ;
Faverzani, M. ;
Ferri, E. ;
Ferroni, F. ;
Fiorini, E. ;
Franceschi, M. A. ;
Freedman, S. J. ;
Fu, S. H. ;
Fujikawa, B. K. ;
Giachero, A. ;
Gironi, L. ;
Giuliani, A. ;
Gorla, P. ;
Gotti, C. ;
Gutierrez, T. D. .
NATURE, 2022, 604 (7904) :53-+
[9]   First Measurement of Electron Neutrino Appearance in NOvA [J].
Adamson, P. ;
Ader, C. ;
Andrews, M. ;
Anfimov, N. ;
Anghel, I. ;
Arms, K. ;
Arrieta-Diaz, E. ;
Aurisano, A. ;
Ayres, D. S. ;
Backhouse, C. ;
Baird, M. ;
Bambah, B. A. ;
Bays, K. ;
Bernstein, R. ;
Betancourt, M. ;
Bhatnagar, V. ;
Bhuyan, B. ;
Bian, J. ;
Biery, K. ;
Blackburn, T. ;
Bocean, V. ;
Bogert, D. ;
Bolshakova, A. ;
Bowden, M. ;
Bower, C. ;
Broemmelsiek, D. ;
Bromberg, C. ;
Brunetti, G. ;
Bu, X. ;
Butkevich, A. ;
Capista, D. ;
Catano-Mur, E. ;
Chase, T. R. ;
Childress, S. ;
Choudhary, B. C. ;
Chowdhury, B. ;
Coan, T. E. ;
Coelho, J. A. B. ;
Colo, M. ;
Cooper, J. ;
Corwin, L. ;
Cronin-Hennessy, D. ;
Cunningham, A. ;
Davies, G. S. ;
Davies, J. P. ;
Del Tutto, M. ;
Derwent, P. F. ;
Deepthi, K. N. ;
Demuth, D. ;
Desai, S. .
PHYSICAL REVIEW LETTERS, 2016, 116 (15)
[10]   On Nonintrusive Uncertainty Quantification and Surrogate Model Construction in Particle Accelerator Modeling [J].
Adelmann, Andreas .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02) :383-416