On a Schoenberg-type conjecture

被引:6
作者
de Bruin, MG
Sharma, A
机构
[1] Delft Univ Technol, Fac Informat Technol & Syst, Dept Tech Math & Informat, NL-2600 GA Delft, Netherlands
[2] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
geometry of zeros; weighted sums; inequalities;
D O I
10.1016/S0377-0427(99)00013-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary polynomial P-n(z) = z(n) - a(1)z(n-1) + a(2)z(n-2) + ... + (-1)(n)a(n) = Pi(1)(n)(z - z(j)) with the sum of all zeros equal to zero, a(1) = Sigma(1)(n) z(j) = 0, the quadratic mean radius is defined by [GRAPHICS] and the quartic mean radius by [GRAPHICS] This paper studies a Schoenberg-type conjecture using the quartic mean radius in the following form: n-4/n-1S(P-n)(4) + 2/n-1 R(P-n)(4) greater than or equal to S(P-n')(4), with equality if and only if the zeros all lie on a straight line through the origin in the complex plane. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 3 条
[1]  
DEBRUIN MG, 1999, IN PRESS J INEQUAL A
[2]  
IVANOV KG, 1996, SERDICA MATH J, V22, P497